These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 7749275)

  • 1. Effect of dust from a limestone quarry on the photosynthesis of Quercus coccifera, an evergreen schlerophyllous shrub.
    Vardaka E; Cook CM; Lanaras T; Sgardelis SP; Pantis JD
    Bull Environ Contam Toxicol; 1995 Mar; 54(3):414-9. PubMed ID: 7749275
    [No Abstract]   [Full Text] [Related]  

  • 2. Influence of dust from a limestone quarry on chlorophyll degradation of the lichen Physcia adscendens (Fr.) Oliv.
    Zaharopoulou A; Lanaras T; Arianoutsou M
    Bull Environ Contam Toxicol; 1993 Jun; 50(6):852-5. PubMed ID: 8495062
    [No Abstract]   [Full Text] [Related]  

  • 3. Dynamic responses of photosystem II in the Namib Desert shrub, Zygophyllum prismatocarpum, during and after foliar deposition of limestone dust.
    van Heerden PD; Krüger GH; Kilbourn Louw M
    Environ Pollut; 2007 Mar; 146(1):34-45. PubMed ID: 16996174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen Cyclobalanopsis glauca seedlings.
    Zhang W; Feng Z; Wang X; Niu J
    Environ Pollut; 2014 Jan; 184():676-81. PubMed ID: 23714144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of pumped water from a de-watered Magnesian limestone quarry on an adjacent wetland: Thrislington, County Durham, UK.
    Mayes WM; Large AR; Younger PL
    Environ Pollut; 2005 Dec; 138(3):443-54. PubMed ID: 15993994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved fluorescence of conifers exposed to environmental pollutants.
    Schneckenburger H; Frenz M
    Radiat Environ Biophys; 1986; 25(4):289-95. PubMed ID: 3823374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Responses of evergreen and deciduous Quercus species to enhanced ozone levels.
    Calatayud V; Cerveró J; Calvo E; García-Breijo FJ; Reig-Armiñana J; Sanz MJ
    Environ Pollut; 2011 Jan; 159(1):55-63. PubMed ID: 20974507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of elevated ozone on photosynthetic CO2 exchange and chlorophyll a fluorescence in leaves of Quercus mongolica grown in urban area.
    Wang L; He X; Chen W
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):478-81. PubMed ID: 19011725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological traits and antioxidant metabolism of leaves of tropical woody species challenged with cement dust.
    Siqueira-Silva AI; Pereira EG; Lemos-Filho JP; Modolo LV; Paiva EAS
    Ecotoxicol Environ Saf; 2017 Oct; 144():307-314. PubMed ID: 28645032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effects of simulated acid rain on Quercus glauca seedlings photosynthesis and chlorophyll fluorescence].
    Li J; Jiang H; Yu SQ; Jiang FW; Yin XM; Lu MJ
    Ying Yong Sheng Tai Xue Bao; 2009 Sep; 20(9):2092-6. PubMed ID: 20030127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct and indirect impact of sewage sludge compost spreading on Quercus coccifera monoterpene emissions in a Mediterranean shrubland.
    Olivier R; Staudt M; Lavoir AV; Ormeño E; Rizvi SH; Baldy V; Rivoal A; Greff S; Lecareux C; Fernandez C
    Environ Pollut; 2011 Apr; 159(4):963-9. PubMed ID: 21251740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of particulate matter accumulation on the photosynthetic apparatus of roadside woody plants growing in the urban conditions.
    Popek R; Przybysz A; Gawrońska H; Klamkowski K; Gawroński SW
    Ecotoxicol Environ Saf; 2018 Nov; 163():56-62. PubMed ID: 30036757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Response of Holm oak (Quercus ilex subsp. ballota) and mastic shrub (Pistacia lentiscus L.) seedlings to high concentrations of Cd and Tl in the rhizosphere.
    Domínguez MT; Marañón T; Murillo JM; Redondo-Gómez S
    Chemosphere; 2011 May; 83(8):1166-74. PubMed ID: 21281955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll Fluorescence Imaging.
    Lawson T; Vialet-Chabrand S
    Methods Mol Biol; 2018; 1770():121-140. PubMed ID: 29978400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of exogenous calcium on cucumber fruit quality, photosynthesis, chlorophyll fluorescence, and fast chlorophyll fluorescence during the fruiting period under hypoxic stress.
    He L; Yu L; Li B; Du N; Guo S
    BMC Plant Biol; 2018 Sep; 18(1):180. PubMed ID: 30180797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compost may affect volatile and semi-volatile plant emissions through nitrogen supply and chlorophyll fluorescence.
    Ormeño E; Olivier R; Mévy JP; Baldy V; Fernandez C
    Chemosphere; 2009 Sep; 77(1):94-104. PubMed ID: 19539976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies with manganese-deficient spinach chloroplasts.
    Anderson JM; Pyliotis NA
    Biochim Biophys Acta; 1969 Oct; 189(2):280-93. PubMed ID: 5350451
    [No Abstract]   [Full Text] [Related]  

  • 18. The importance of being red when young: anthocyanins and the protection of young leaves of Quercus coccifera from insect herbivory and excess light.
    Karageorgou P; Manetas Y
    Tree Physiol; 2006 May; 26(5):613-21. PubMed ID: 16452075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of thylakoid components during chloroplast development in higher plants.
    Akoyunoglou G
    Prog Clin Biol Res; 1982; 102 Pt B():171-88. PubMed ID: 7163169
    [No Abstract]   [Full Text] [Related]  

  • 20. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis.
    Holland V; Koller S; Brüggemann W
    Plant Biol (Stuttg); 2014 Jul; 16(4):801-8. PubMed ID: 24112772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.