These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 7749620)

  • 1. Alkaloid metabolism by cytochrome P-450 enzymes in Drosophila melanogaster.
    Danielson PB; Letman JA; Fogleman JC
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Apr; 110(4):683-8. PubMed ID: 7749620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of Drosophila melanogaster to selection for P450-mediated resistance to isoquinoline alkaloids.
    Fogleman JC
    Chem Biol Interact; 2000 Mar; 125(2):93-105. PubMed ID: 10699570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of cytochrome P450 in host-plant utilization by Sonoran Desert Drosophila.
    Frank MR; Fogleman JC
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11998-2002. PubMed ID: 1465429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction by alkaloids and phenobarbital of Family 4 Cytochrome P450s in Drosophila: evidence for involvement in host plant utilization.
    Danielson PB; Foster JL; McMahill MM; Smith MK; Fogleman JC
    Mol Gen Genet; 1998 Jul; 259(1):54-9. PubMed ID: 9738880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host Plant Adaptation in Cactophilic Species of the Drosophila buzzatii Cluster: Fitness and Transcriptomics.
    Hasson E; De Panis D; Hurtado J; Mensch J
    J Hered; 2019 Jan; 110(1):46-57. PubMed ID: 30107510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significance of saguaro cactus alkaloids in ecology ofDrosophila mettleri, a soil-breeding, cactophilic drosophilid.
    Meyer JM; Fogleman JC
    J Chem Ecol; 1987 Nov; 13(11):2069-81. PubMed ID: 24301541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences in tolerance to host cactus alkaloids in Drosophila koepferae and D. buzzatii.
    Soto IM; Carreira VP; Corio C; Padró J; Soto EM; Hasson E
    PLoS One; 2014; 9(2):e88370. PubMed ID: 24520377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.
    Coelho A; Fraichard S; Le Goff G; Faure P; Artur Y; Ferveur JF; Heydel JM
    PLoS One; 2015; 10(2):e0117328. PubMed ID: 25671424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of larval and adult P-450 activity levels for alkaloid metabolism in desertDrosophila.
    Danielson PB; Frank MR; Fogleman JC
    J Chem Ecol; 1994 Aug; 20(8):1893-906. PubMed ID: 24242717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of promutagens catalyzed by Drosophila melanogaster CYP6A2 enzyme in Saccharomyces cerevisiae.
    Saner C; Weibel B; Wurgler FE; Sengstag C
    Environ Mol Mutagen; 1996; 27(1):46-58. PubMed ID: 8625948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic variation in cytochrome P-450 and xenobiotic metabolism in Drosophila melanogaster.
    Hällström I; Blanck A; Atuma S
    Biochem Pharmacol; 1984 Jan; 33(1):13-20. PubMed ID: 6422940
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Drosophila cytochrome P450 gene Cyp6a2: structure, localization, heterologous expression, and induction by phenobarbital.
    Dunkov BC; Guzov VM; Mocelin G; Shotkoski F; Brun A; Amichot M; Ffrench-Constant RH; Feyereisen R
    DNA Cell Biol; 1997 Nov; 16(11):1345-56. PubMed ID: 9407006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipidomic profiles of Drosophila melanogaster and cactophilic fly species: models of human metabolic diseases.
    Cázarez-García D; Ramírez Loustalot-Laclette M; Ann Markow T; Winkler R
    Integr Biol (Camb); 2017 Nov; 9(11):885-891. PubMed ID: 29043354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis.
    Saruwatari T; Yagishita F; Mino T; Noguchi H; Hotta K; Watanabe K
    Chembiochem; 2014 Mar; 15(5):656-9. PubMed ID: 24677498
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of starvation and desiccation on energy metabolism in desert and mesic Drosophila.
    Marron MT; Markow TA; Kain KJ; Gibbs AG
    J Insect Physiol; 2003 Mar; 49(3):261-70. PubMed ID: 12770001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cytochrome P-450-dependent metabolism in different developmental stages of Drosophila melanogaster.
    Hällstöm I; Blanck A; Atuma S
    Chem Biol Interact; 1983 Aug; 46(1):39-54. PubMed ID: 6311445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital.
    Willoughby L; Chung H; Lumb C; Robin C; Batterham P; Daborn PJ
    Insect Biochem Mol Biol; 2006 Dec; 36(12):934-42. PubMed ID: 17098168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The involvement of cytochrome P450 monooxygenases in methanol elimination in Drosophila melanogaster larvae.
    Wang SP; He GL; Chen RR; Li F; Li GQ
    Arch Insect Biochem Physiol; 2012 Apr; 79(4-5):264-75. PubMed ID: 22508581
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contrasting population genetic patterns and evolutionary histories among sympatric Sonoran Desert cactophilic Drosophila.
    Hurtado LA; Erez T; Castrezana S; Markow TA
    Mol Ecol; 2004 Jun; 13(6):1365-75. PubMed ID: 15140083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mining of the Uncharacterized Cytochrome P450 Genes Involved in Alkaloid Biosynthesis in California Poppy Using a Draft Genome Sequence.
    Hori K; Yamada Y; Purwanto R; Minakuchi Y; Toyoda A; Hirakawa H; Sato F
    Plant Cell Physiol; 2018 Feb; 59(2):222-233. PubMed ID: 29301019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.