BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7749930)

  • 1. Cytokines inhibit fatty acid oxidation in isolated rat hepatocytes: synergy among TNF, IL-6, and IL-1.
    Nachiappan V; Curtiss D; Corkey BE; Kilpatrick L
    Shock; 1994 Feb; 1(2):123-9. PubMed ID: 7749930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TNF-alpha and IL-6 synergistically inhibit ketogenesis from fatty acids and alpha-ketoisocaproate in isolated rat hepatocytes.
    Pailla K; Lim SK; De Bandt JP; Aussel C; Giboudeau J; Troupel S; Cynober L; Blonde-Cynober F
    JPEN J Parenter Enteral Nutr; 1998; 22(5):286-90. PubMed ID: 9739031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of insulin on ketogenesis and fatty acid synthesis in rat hepatocytes incubated with dichloroacetate.
    Agius L; Vaartjes WJ
    Biochim Biophys Acta; 1985 Mar; 844(3):393-9. PubMed ID: 3918587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for two classes of cytokines that stimulate hepatic lipogenesis: relationships among tumor necrosis factor, interleukin-1 and interferon-alpha.
    Grunfeld C; Soued M; Adi S; Moser AH; Dinarello CA; Feingold KR
    Endocrinology; 1990 Jul; 127(1):46-54. PubMed ID: 1972922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of malonyl-coa in the coordination of fatty acid synthesis and oxidation in isolated rat hepatocytes.
    McGarry JD; Takabayashi Y; Foster DW
    J Biol Chem; 1978 Nov; 253(22):8294-300. PubMed ID: 711753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of fenfluramine on hepatic intermediary metabolism.
    Geelen MJ
    Biochem Pharmacol; 1983 Nov; 32(22):3321-4. PubMed ID: 6651858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by acetyl-CoA of hepatic carnitine acyltransferase and fatty acid oxidation.
    McCormick K; Notar-Francesco VJ; Sriwatanakul K
    Biochem J; 1983 Nov; 216(2):499-502. PubMed ID: 6661211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. THE EFFECTS OF ADENINE NUCLEOTIDES ON PYRUVATE METABOLISM IN RAT LIVER.
    BERRY MN
    Biochem J; 1965 Jun; 95(3):587-96. PubMed ID: 14342491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation.
    Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD
    Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of 2[5(4-chlorphenyl)pentyl]oxirane-2-carboxylate on fatty acid synthesis and fatty acid oxidation in isolated rat hepatocytes.
    Agius L; Pillay D; Alberti KG; Sherratt HS
    Biochem Pharmacol; 1985 Aug; 34(15):2651-4. PubMed ID: 2861821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of the modulation of glycolysis in the control of lactate metabolism by fatty acids in isolated hepatocytes from fed rats.
    Morand C; Besson C; Demigne C; Remesy C
    Arch Biochem Biophys; 1994 Mar; 309(2):254-60. PubMed ID: 8135535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of propionate and carnitine on the hepatic oxidation of short- and medium-chain-length fatty acids.
    Brass EP; Beyerinck RA
    Biochem J; 1988 Mar; 250(3):819-25. PubMed ID: 3134008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of hepatic fatty acid oxidation and ketone body production.
    McGarry JD; Foster DW
    Annu Rev Biochem; 1980; 49():395-420. PubMed ID: 6157353
    [No Abstract]   [Full Text] [Related]  

  • 14. Altered interactions between lipogenesis and fatty acid oxidation in regenerating rat liver.
    Schofield PS; Sugden MC; Corstorphine CG; Zammit VA
    Biochem J; 1987 Jan; 241(2):469-74. PubMed ID: 3593202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propionate-induced changes in cardiac metabolism, notably CoA trapping, are not altered by l-carnitine.
    Wang Y; Christopher BA; Wilson KA; Muoio D; McGarrah RW; Brunengraber H; Zhang GF
    Am J Physiol Endocrinol Metab; 2018 Oct; 315(4):E622-E633. PubMed ID: 30016154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Malonyl-CoA content and fatty acid oxidation in rat muscle and liver in vivo.
    Chien D; Dean D; Saha AK; Flatt JP; Ruderman NB
    Am J Physiol Endocrinol Metab; 2000 Aug; 279(2):E259-65. PubMed ID: 10913024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control mechanisms of gluconeogenesis and ketogenesis. II. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver.
    Williamson JR; Scholz R; Browning ET
    J Biol Chem; 1969 Sep; 244(17):4617-27. PubMed ID: 5808508
    [No Abstract]   [Full Text] [Related]  

  • 18. Differential effects of interleukin-1 and tumor necrosis factor on ketogenesis.
    Memon RA; Feingold KR; Moser AH; Doerrler W; Adi S; Dinarello CA; Grunfeld C
    Am J Physiol; 1992 Aug; 263(2 Pt 1):E301-9. PubMed ID: 1514611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver.
    Kasumov T; Adams JE; Bian F; David F; Thomas KR; Jobbins KA; Minkler PE; Hoppel CL; Brunengraber H
    Biochem J; 2005 Jul; 389(Pt 2):397-401. PubMed ID: 15773815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aspects of ketogenesis: control and mechanism of ketone-body formation in isolated rat-liver mitochondria.
    Lopes-Cardozo M; Mulder I; van Vugt F; Hermans PG; van den Bergh SG; Klazinga W; de Vries-Akkerman E
    Mol Cell Biochem; 1975 Dec; 9(3):155-73. PubMed ID: 1196305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.