BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 7750540)

  • 1. Evidence for a monooxygenase-catalyzed primary process in the catabolism of chlorophyll.
    Curty C; Engel N; Gossauer A
    FEBS Lett; 1995 May; 364(1):41-4. PubMed ID: 7750540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The key step in chlorophyll breakdown in higher plants. Cleavage of pheophorbide a macrocycle by a monooxygenase.
    Hörtensteiner S; Wüthrich KL; Matile P; Ongania KH; Kräutler B
    J Biol Chem; 1998 Jun; 273(25):15335-9. PubMed ID: 9624113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The derivation of the formyl-group oxygen of chlorophyll b in higher plants from molecular oxygen. Achievement of high enrichment of the 7-formyl-group oxygen from 18O2 in greening maize leaves.
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    Eur J Biochem; 1994 Jan; 219(1-2):671-9. PubMed ID: 8307032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origin of the chlorophyll b formyl oxygen in Chlorella vulgaris.
    Schneegurt MA; Beale SI
    Biochemistry; 1992 Dec; 31(47):11677-83. PubMed ID: 1445904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorophyll breakdown in higher plants.
    Hörtensteiner S; Kräutler B
    Biochim Biophys Acta; 2011 Aug; 1807(8):977-88. PubMed ID: 21167811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Derivation of the formyl-group oxygen of chlorophyll b from molecular oxygen in greening leaves of a higher plant (Zea mays).
    Porra RJ; Schäfer W; Cmiel E; Katheder I; Scheer H
    FEBS Lett; 1993 May; 323(1-2):31-4. PubMed ID: 8495742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlorophyll breakdown in higher plants and algae.
    Hörtensteiner S
    Cell Mol Life Sci; 1999 Oct; 56(3-4):330-47. PubMed ID: 11212360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The biochemistry and molecular biology of chlorophyll breakdown.
    Kuai B; Chen J; Hörtensteiner S
    J Exp Bot; 2018 Feb; 69(4):751-767. PubMed ID: 28992212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the chlorophyll catabolism pathway in leaves of an introgression senescence mutant of Lolium temulentum.
    Roca M; James C; Pruzinská A; Hörtensteiner S; Thomas H; Ougham H
    Phytochemistry; 2004 May; 65(9):1231-8. PubMed ID: 15184007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chlorophyll breakdown in senescent banana leaves: catabolism reprogrammed for biosynthesis of persistent blue fluorescent tetrapyrroles.
    Vergeiner C; Banala S; Kräutler B
    Chemistry; 2013 Sep; 19(37):12294-305. PubMed ID: 23946204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Arabidopsis-accelerated cell death gene ACD1 is involved in oxygenation of pheophorbide a: inhibition of the pheophorbide a oxygenase activity does not lead to the "stay-green" phenotype in Arabidopsis.
    Tanaka R; Hirashima M; Satoh S; Tanaka A
    Plant Cell Physiol; 2003 Dec; 44(12):1266-74. PubMed ID: 14701922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorophyll breakdown and chlorophyll catabolites in leaves and fruit.
    Kräutler B
    Photochem Photobiol Sci; 2008 Oct; 7(10):1114-20. PubMed ID: 18846275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxymethylated Dioxobilins in Senescent Arabidopsis thaliana Leaves: Sign of a Puzzling Biosynthetic Intermezzo of Chlorophyll Breakdown.
    Süssenbacher I; Kreutz CR; Christ B; Hörtensteiner S; Kräutler B
    Chemistry; 2015 Aug; 21(33):11664-70. PubMed ID: 26179061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlorophyll a biosynthetic heterogeneity.
    Rebeiz CA; Parham R; Fasoula DA; Ioannides IM
    Ciba Found Symp; 1994; 180():177-89; discussion 190-3. PubMed ID: 7842852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporation of atmospheric oxygen into the carbonyl functionality of the protochlorophyllide isocyclic ring.
    Walker CJ; Mansfield KE; Smith KM; Castelfranco PA
    Biochem J; 1989 Jan; 257(2):599-602. PubMed ID: 2930469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorophyll breakdown in Chlorella protothecoides: characterization of degreening and cloning of degreening-related genes.
    Hörtensteiner S; Chinner J; Matile P; Thomas H; Donnison IS
    Plant Mol Biol; 2000 Feb; 42(3):439-50. PubMed ID: 10798614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 13²,17³-Cyclopheophorbide b enol as a catabolite of chlorophyll b in phycophagy by protists.
    Kashiyama Y; Yokoyama A; Shiratori T; Inouye I; Kinoshita Y; Mizoguchi T; Tamiaki H
    FEBS Lett; 2013 Aug; 587(16):2578-83. PubMed ID: 23831061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Update on the biochemistry of chlorophyll breakdown.
    Hörtensteiner S
    Plant Mol Biol; 2013 Aug; 82(6):505-17. PubMed ID: 22790503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.
    Chen M
    Annu Rev Biochem; 2014; 83():317-40. PubMed ID: 24635479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonfluorescent chlorophyll catabolites in loquat fruits (Eriobotrya japonica Lindl.).
    Ríos JJ; Roca M; Pérez-Gálvez A
    J Agric Food Chem; 2014 Oct; 62(43):10576-84. PubMed ID: 25293494
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.