These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 7751292)
41. Effect of cosubstrates on the dechlorination of selected chlorophenolic compounds by Rhodococcus erythropolis 1CP. Gorlatov SN; Golovleva LA J Basic Microbiol; 1992; 32(3):177-84. PubMed ID: 1512708 [TBL] [Abstract][Full Text] [Related]
42. Roles of CatR and cis,cis-muconate in activation of the catBC operon, which is involved in benzoate degradation in Pseudomonas putida. Parsek MR; Shinabarger DL; Rothmel RK; Chakrabarty AM J Bacteriol; 1992 Dec; 174(23):7798-806. PubMed ID: 1447146 [TBL] [Abstract][Full Text] [Related]
43. Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Kuhm AE; Schlömann M; Knackmuss HJ; Pieper DH Biochem J; 1990 Mar; 266(3):877-83. PubMed ID: 2327971 [TBL] [Abstract][Full Text] [Related]
44. QM/MM study of the reaction mechanism of Cl-cis,cis-muconate with muconate lactonizing enzyme. Zhu L; Tang X; Li Y; Zhang R; Wang J; Zhang Q; Wang W Bioorg Chem; 2018 Oct; 80():453-460. PubMed ID: 29986190 [TBL] [Abstract][Full Text] [Related]
45. Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Veselý M; Knoppová M; Nesvera J; Pátek M Appl Microbiol Biotechnol; 2007 Aug; 76(1):159-68. PubMed ID: 17483937 [TBL] [Abstract][Full Text] [Related]
46. Chloromethylmuconolactones as critical metabolites in the degradation of chloromethylcatechols: recalcitrance of 2-chlorotoluene. Pollmann K; Wray V; Pieper DH J Bacteriol; 2005 Apr; 187(7):2332-40. PubMed ID: 15774876 [TBL] [Abstract][Full Text] [Related]
47. Enzymes of the beta-ketoadipate pathway in Pseudomonas putida: kinetic and magnetic resonance studies of the cis,cis-muconate cycloisomerase catalyzed reaction. Ngai KL; Ornston LN; Kallen RG Biochemistry; 1983 Oct; 22(22):5223-30. PubMed ID: 6652062 [TBL] [Abstract][Full Text] [Related]
48. Structural basis for the activity of two muconate cycloisomerase variants toward substituted muconates. Schell U; Helin S; Kajander T; Schlömann M; Goldman A Proteins; 1999 Jan; 34(1):125-36. PubMed ID: 10336378 [TBL] [Abstract][Full Text] [Related]
49. Crystal structure and catalytic mechanism of chloromuconolactone dehalogenase ClcF from Rhodococcus opacus 1CP. Roth C; Gröning JA; Kaschabek SR; Schlömann M; Sträter N Mol Microbiol; 2013 Apr; 88(2):254-67. PubMed ID: 23421784 [TBL] [Abstract][Full Text] [Related]
50. Chlorocatechol 1,2-dioxygenase from Rhodococcus erythropolis 1CP. Kinetic and immunochemical comparison with analogous enzymes from gram-negative strains. Maltseva OV; Solyanikova IP; Golovleva LA Eur J Biochem; 1994 Dec; 226(3):1053-61. PubMed ID: 7813460 [TBL] [Abstract][Full Text] [Related]
51. pH-stat fed-batch process to enhance the production of cis, cis-muconate from benzoate by Pseudomonas putida KT2440-JD1. van Duuren JB; Wijte D; Karge B; dos Santos VA; Yang Y; Mars AE; Eggink G Biotechnol Prog; 2012; 28(1):85-92. PubMed ID: 21954182 [TBL] [Abstract][Full Text] [Related]
52. Chloromuconolactone dehalogenase ClcF of actinobacteria. Solyanikova IP; Plotnikova EG; Shumkova ES; Robota IV; Prisyazhnaya NV; Golovleva LA J Environ Sci Health B; 2014; 49(6):422-31. PubMed ID: 24762180 [TBL] [Abstract][Full Text] [Related]
53. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process. Solyanikova IP; Emelyanova EV; Borzova OV; Golovleva LA J Environ Sci Health B; 2016; 51(3):182-91. PubMed ID: 26669259 [TBL] [Abstract][Full Text] [Related]
54. Kinetics of interaction between substrates/substrate analogs and benzoate 1,2-dioxygenase from benzoate-degrading Rhodococcus opacus 1CP. Solyanikova IP; Borzova OV; Emelyanova EV Folia Microbiol (Praha); 2017 Jul; 62(4):355-362. PubMed ID: 28236176 [TBL] [Abstract][Full Text] [Related]
55. Muconolactone isomerase of the 3-oxoadipate pathway catalyzes dechlorination of 5-chloro-substituted muconolactones. Prucha M; Peterseim A; Timmis KN; Pieper DH Eur J Biochem; 1996 Apr; 237(2):350-6. PubMed ID: 8647072 [TBL] [Abstract][Full Text] [Related]
56. Purification and characterization of two muconate cycloisomerase isozymes from aniline-assimilating Frateuria species ANA-18. Murakami S; Takemoto J; Takashima A; Shinke R; Aoki K Biosci Biotechnol Biochem; 1998 Jun; 62(6):1129-33. PubMed ID: 9692194 [TBL] [Abstract][Full Text] [Related]
57. Benzoate decreases the binding of cis,cis-muconate to the BenM regulator despite the synergistic effect of both compounds on transcriptional activation. Clark TJ; Phillips RS; Bundy BM; Momany C; Neidle EL J Bacteriol; 2004 Feb; 186(4):1200-4. PubMed ID: 14762017 [TBL] [Abstract][Full Text] [Related]
58. Benzoate and muconate, structurally dissimilar metabolites, induce expression of catA in Acinetobacter calcoaceticus. Neidle EL; Ornston LN J Bacteriol; 1987 Jan; 169(1):414-5. PubMed ID: 3793718 [TBL] [Abstract][Full Text] [Related]
59. 4-Chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing Gram-positive Rhodococcus opacus 1CP: crystallization and preliminary crystallographic analysis. Ferraroni M; Ruiz Tarifa MY; Briganti F; Scozzafava A; Mangani S; Solyanikova IP; Kolomytseva MP; Golovleva L Acta Crystallogr D Biol Crystallogr; 2002 Jun; 58(Pt 6 Pt 2):1074-6. PubMed ID: 12037322 [TBL] [Abstract][Full Text] [Related]
60. mucK, a gene in Acinetobacter calcoaceticus ADP1 (BD413), encodes the ability to grow on exogenous cis,cis-muconate as the sole carbon source. Williams PA; Shaw LE J Bacteriol; 1997 Sep; 179(18):5935-42. PubMed ID: 9294455 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]