These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 7751599)

  • 1. Characterization of honeybee (Apis mellifera L.) chromosomes using repetitive DNA probes and fluorescence in situ hybridization.
    Beye M; Moritz RF
    J Hered; 1995; 86(2):145-50. PubMed ID: 7751599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an unusually conserved AluI highly reiterated DNA sequence family from the honeybee, Apis mellifera.
    Tarès S; Cornuet JM; Abad P
    Genetics; 1993 Aug; 134(4):1195-204. PubMed ID: 8104160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Porto-1, a new repeated sequence that localises close to the centromere of chromosome 2 of Drosophila melanogaster.
    Coelho PA; Nurminsky D; Hartl D; Sunkel CE
    Chromosoma; 1996 Oct; 105(4):211-22. PubMed ID: 8854880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A conserved repetitive DNA element located in the centromeres of cereal chromosomes.
    Jiang J; Nasuda S; Dong F; Scherrer CW; Woo SS; Wing RA; Gill BS; Ward DC
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):14210-3. PubMed ID: 8943086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of DNA sequences localized on proximal fluorescent chromosome bands by microdissection in Pinus densiflora Sieb. & Zucc.
    Hizume M; Shibata F; Maruyama Y; Kondo T
    Chromosoma; 2001 Sep; 110(5):345-51. PubMed ID: 11685534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oligonucleotide probes for the analysis of specific repetitive DNA sequences by fluorescence in situ hybridization.
    Matera AG; Ward DC
    Hum Mol Genet; 1992 Oct; 1(7):535-9. PubMed ID: 1307254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Localization of repetitive DNAs to zebrafish (Danio rerio) chromosomes by fluorescence in situ hybridization (FISH).
    Phillips RB; Reed KM
    Chromosome Res; 2000; 8(1):27-35. PubMed ID: 10730586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of micronuclei induced by 2-chlorobenzylidene malonitrile (CS) using fluorescence in situ hybridization with telomeric and centromeric DNA probes, and flow cytometry.
    Miller BM; Nüsse M
    Mutagenesis; 1993 Jan; 8(1):35-41. PubMed ID: 8450766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nature of B chromosomes in the harvest mouse Reithrodontomys megalotis by fluorescence in situ hybridization (FISH).
    Peppers JA; Wiggins LE; Baker RJ
    Chromosome Res; 1997 Nov; 5(7):475-9. PubMed ID: 9421265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ hybridization analysis of chromosomal homologies in Drosophila melanogaster and Drosophila virilis.
    Whiting JH; Pliley MD; Farmer JL; Jeffery DE
    Genetics; 1989 May; 122(1):99-109. PubMed ID: 2499517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transposable elements in commercially useful insects: I. Southern hybridization study of silkworms and honeybees using Drosophila probes.
    Kimura K; Okumura T; Ninaki O; Kidwell MG; Suzuki K
    Jpn J Genet; 1993 Feb; 68(1):63-71. PubMed ID: 8391286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent in situ hybridization with transposable element probes to mitotic chromosomal heterochromatin of Drosophila.
    Dimitri P
    Methods Mol Biol; 2004; 260():29-39. PubMed ID: 15020800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual Alu polymerase chain reaction primers and conditions for isolation of human chromosome painting probes from hybrid cells.
    Liu P; Siciliano J; Seong D; Craig J; Zhao Y; de Jong PJ; Siciliano MJ
    Cancer Genet Cytogenet; 1993 Feb; 65(2):93-9. PubMed ID: 8453610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiation of micronuclei in mouse bone marrow cells: a comparison between CREST staining and fluorescent in situ hybridization with centromeric and telomeric DNA probes.
    Schriever-Schwemmer G; Adler ID
    Mutagenesis; 1994 Jul; 9(4):333-40. PubMed ID: 7968575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal analysis of repeated DNAs in the rainbow wrasse Coris julis (Pisces, Labridae).
    Mandrioli M; Colomba MS; Vitturi R
    Genetica; 2000; 108(2):191-5. PubMed ID: 11138947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple non-toxic ethylene carbonate fluorescence in situ hybridization (EC-FISH) for simultaneous detection of repetitive DNA sequences and fluorescent bands in plants.
    Golczyk H
    Protoplasma; 2019 May; 256(3):873-880. PubMed ID: 30656455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence-based design of single-copy genomic DNA probes for fluorescence in situ hybridization.
    Rogan PK; Cazcarro PM; Knoll JH
    Genome Res; 2001 Jun; 11(6):1086-94. PubMed ID: 11381034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromosome analysis and molecular characterization of highly repeated DNAs in the aphid Acyrthosiphon pisum (Aphididae, Hemiptera).
    Bizzaro D; Mandrioli M; Zanotti M; Giusti M; Manicardi GC
    Genetica; 2000; 108(2):197-202. PubMed ID: 11138948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-color hybridization with high complexity chromosome-specific probes and a degenerate alpha satellite probe DNA allows unambiguous discrimination between symmetrical and asymmetrical translocations.
    Weier HU; Lucas JN; Poggensee M; Segraves R; Pinkel D; Gray JW
    Chromosoma; 1991 Jul; 100(6):371-6. PubMed ID: 1893794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Labeling of human centromeres using an alphoid DNA consensus sequence: application to the scoring of chromosome aberrations.
    Meyne J; Littlefield LG; Moyzis RK
    Mutat Res; 1989 Jun; 226(2):75-9. PubMed ID: 2733720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.