These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7751649)

  • 41. Mechanism of action of factor D of the alternative complement pathway.
    Lesavre PH; Müller-Eberhard HJ
    J Exp Med; 1978 Dec; 148(6):1498-509. PubMed ID: 82604
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrostatic complementarity within the substrate-binding pocket of trypsin.
    Gráf L; Jancsó A; Szilágyi L; Hegyi G; Pintér K; Náray-Szabó G; Hepp J; Medzihradszky K; Rutter WJ
    Proc Natl Acad Sci U S A; 1988 Jul; 85(14):4961-5. PubMed ID: 3134655
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Evidence for communality in the primary determinants of CYP74 catalysis and of structural similarities between CYP74 and classical mammalian P450 enzymes.
    Hughes RK; Yousafzai FK; Ashton R; Chechetkin IR; Fairhurst SA; Hamberg M; Casey R
    Proteins; 2008 Sep; 72(4):1199-211. PubMed ID: 18338380
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Engineering of the substrate-binding region of the subtilisin-like, cell-envelope proteinase of Lactococcus lactis.
    Siezen RJ; Bruinenberg PG; Vos P; van Alen-Boerrigter I; Nijhuis M; Alting AC; Exterkate FA; de Vos WM
    Protein Eng; 1993 Nov; 6(8):927-37. PubMed ID: 8309942
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catalytic ability and stability of two recombinant mutants of D-amino acid transaminase involved in coenzyme binding.
    Van Ophem PW; Pospischil MA; Ringe D; Peisach D; Petsko G; Soda K; Manning JM
    Protein Sci; 1995 Dec; 4(12):2578-86. PubMed ID: 8580849
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme.
    Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH
    Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface loops adjacent to the cation-binding site of the complement factor B von Willebrand factor type A module determine C3b binding specificity.
    Tuckwell DS; Xu Y; Newham P; Humphries MJ; Volanakis JE
    Biochemistry; 1997 Jun; 36(22):6605-13. PubMed ID: 9184140
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metal-dependent conformational changes in a recombinant vWF-A domain from human factor B: a solution study by circular dichroism, fourier transform infrared and (1)H NMR spectroscopy.
    Hinshelwood J; Perkins SJ
    J Mol Biol; 2000 Apr; 298(1):135-47. PubMed ID: 10756110
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Mycobacterium leprae hsp65 displays proteolytic activity. Mutagenesis studies indicate that the M. leprae hsp65 proteolytic activity is catalytically related to the HslVU protease.
    Portaro FC; Hayashi MA; De Arauz LJ; Palma MS; Assakura MT; Silva CL; de Camargo AC
    Biochemistry; 2002 Jun; 41(23):7400-6. PubMed ID: 12044173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Switching substrate preference of thermophilic xylose isomerase from D-xylose to D-glucose by redesigning the substrate binding pocket.
    Meng M; Lee C; Bagdasarian M; Zeikus JG
    Proc Natl Acad Sci U S A; 1991 May; 88(9):4015-9. PubMed ID: 2023950
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Exploring substrate binding and discrimination in fructose1, 6-bisphosphate and tagatose 1,6-bisphosphate aldolases.
    Zgiby SM; Thomson GJ; Qamar S; Berry A
    Eur J Biochem; 2000 Mar; 267(6):1858-68. PubMed ID: 10712619
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An immune responsive complement factor D/adipsin and kallikrein-like serine protease (PoDAK) from the olive flounder Paralichthys olivaceus.
    Kong HJ; Hong GE; Nam BH; Kim YO; Kim WJ; Lee SJ; Lee NS; Do JW; Cho HK; Cheong J; Lee CH; Kim KK
    Fish Shellfish Immunol; 2009 Sep; 27(3):486-92. PubMed ID: 19591942
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure-Based Library Design and Fragment Screening for the Identification of Reversible Complement Factor D Protease Inhibitors.
    Vulpetti A; Randl S; Rüdisser S; Ostermann N; Erbel P; Mac Sweeney A; Zoller T; Salem B; Gerhartz B; Cumin F; Hommel U; Dalvit C; Lorthiois E; Maibaum J
    J Med Chem; 2017 Mar; 60(5):1946-1958. PubMed ID: 28157311
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Site-directed mutagenesis of the putative active site residues of 3C proteinase of coxsackievirus B3: evidence of a functional relationship with trypsin-like serine proteinases.
    Miyashita K; Kusumi M; Utsumi R; Katayama S; Noda M; Komano T; Satoh N
    Protein Eng; 1993 Feb; 6(2):189-93. PubMed ID: 8386363
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ala226 to Gly and Ser189 to Asp mutations convert rat chymotrypsin B to a trypsin-like protease.
    Jelinek B; Antal J; Venekei I; Gráf L
    Protein Eng Des Sel; 2004 Feb; 17(2):127-31. PubMed ID: 15047908
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Use of sequence microdivergence in mycobacterial ortholog to analyze contributions of the water-activating loop histidine of Escherichia coli uracil-DNA glycosylase in reactant binding and catalysis.
    Acharya N; Talawar RK; Purnapatre K; Varshney U
    Biochem Biophys Res Commun; 2004 Jul; 320(3):893-9. PubMed ID: 15240132
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural analysis of Sindbis virus capsid mutants involving assembly and catalysis.
    Choi HK; Lee S; Zhang YP; McKinney BR; Wengler G; Rossmann MG; Kuhn RJ
    J Mol Biol; 1996 Sep; 262(2):151-67. PubMed ID: 8831786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The crystal structure of the catalytic domain of human urokinase-type plasminogen activator.
    Spraggon G; Phillips C; Nowak UK; Ponting CP; Saunders D; Dobson CM; Stuart DI; Jones EY
    Structure; 1995 Jul; 3(7):681-91. PubMed ID: 8591045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.