These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 7751945)
1. Evidence for apoptotic cell death in Huntington disease and excitotoxic animal models. Portera-Cailliau C; Hedreen JC; Price DL; Koliatsos VE J Neurosci; 1995 May; 15(5 Pt 2):3775-87. PubMed ID: 7751945 [TBL] [Abstract][Full Text] [Related]
2. Relative survival of striatal projection neurons and interneurons after intrastriatal injection of quinolinic acid in rats. Figueredo-Cardenas G; Anderson KD; Chen Q; Veenman CL; Reiner A Exp Neurol; 1994 Sep; 129(1):37-56. PubMed ID: 7925841 [TBL] [Abstract][Full Text] [Related]
3. The mitochondrial toxin 3-nitropropionic acid induces differential expression patterns of apoptosis-related markers in rat striatum. Vis JC; Verbeek MM; de Waal RM; ten Donkelaar HJ; Kremer B Neuropathol Appl Neurobiol; 2001 Feb; 27(1):68-76. PubMed ID: 11299004 [TBL] [Abstract][Full Text] [Related]
4. Non-NMDA and NMDA receptor-mediated excitotoxic neuronal deaths in adult brain are morphologically distinct: further evidence for an apoptosis-necrosis continuum. Portera-Cailliau C; Price DL; Martin LJ J Comp Neurol; 1997 Feb; 378(1):88-104. PubMed ID: 9120056 [TBL] [Abstract][Full Text] [Related]
5. Nuclear factor-kappa B contributes to excitotoxin-induced apoptosis in rat striatum. Qin ZH; Wang Y; Nakai M; Chase TN Mol Pharmacol; 1998 Jan; 53(1):33-42. PubMed ID: 9443930 [TBL] [Abstract][Full Text] [Related]
6. Morphology and compartmental location of cells exhibiting DNA damage after quinolinic acid injections into rat striatum. Bordelon YM; Mackenzie L; Chesselet MF J Comp Neurol; 1999 Sep; 412(1):38-50. PubMed ID: 10440708 [TBL] [Abstract][Full Text] [Related]
7. Excitotoxic neuronal death in the immature brain is an apoptosis-necrosis morphological continuum. Portera-Cailliau C; Price DL; Martin LJ J Comp Neurol; 1997 Feb; 378(1):70-87. PubMed ID: 9120055 [TBL] [Abstract][Full Text] [Related]
8. Administration of recombinant human Activin-A has powerful neurotrophic effects on select striatal phenotypes in the quinolinic acid lesion model of Huntington's disease. Hughes PE; Alexi T; Williams CE; Clark RG; Gluckman PD Neuroscience; 1999; 92(1):197-209. PubMed ID: 10392842 [TBL] [Abstract][Full Text] [Related]
9. Decreasing Levels of the cdk5 Activators, p25 and p35, Reduces Excitotoxicity in Striatal Neurons. Park KH; Lu G; Fan J; Raymond LA; Leavitt BR J Huntingtons Dis; 2012; 1(1):89-96. PubMed ID: 24353748 [TBL] [Abstract][Full Text] [Related]
11. p53 induction contributes to excitotoxic neuronal death in rat striatum through apoptotic and autophagic mechanisms. Wang Y; Dong XX; Cao Y; Liang ZQ; Han R; Wu JC; Gu ZL; Qin ZH Eur J Neurosci; 2009 Dec; 30(12):2258-70. PubMed ID: 20092569 [TBL] [Abstract][Full Text] [Related]
12. Excitotoxic neuronal death and the pathogenesis of Huntington's disease. Estrada Sánchez AM; Mejía-Toiber J; Massieu L Arch Med Res; 2008 Apr; 39(3):265-76. PubMed ID: 18279698 [TBL] [Abstract][Full Text] [Related]
13. Comparison of intrastriatal injections of quinolinic acid and 3-nitropropionic acid for use in animal models of Huntington's disease. Shear DA; Dong J; Gundy CD; Haik-Creguer KL; Dunbar GL Prog Neuropsychopharmacol Biol Psychiatry; 1998 Oct; 22(7):1217-40. PubMed ID: 9829299 [TBL] [Abstract][Full Text] [Related]
14. Quinolinic acid-induced increases in calbindin D28k immunoreactivity in rat striatal neurons in vivo and in vitro mimic the pattern seen in Huntington's disease. Huang Q; Zhou D; Sapp E; Aizawa H; Ge P; Bird ED; Vonsattel JP; DiFiglia M Neuroscience; 1995 Mar; 65(2):397-407. PubMed ID: 7777157 [TBL] [Abstract][Full Text] [Related]
15. Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. Beal MF; Brouillet E; Jenkins BG; Ferrante RJ; Kowall NW; Miller JM; Storey E; Srivastava R; Rosen BR; Hyman BT J Neurosci; 1993 Oct; 13(10):4181-92. PubMed ID: 7692009 [TBL] [Abstract][Full Text] [Related]
16. Susceptibility of striatal neurons to excitotoxic injury correlates with basal levels of Bcl-2 and the induction of P53 and c-Myc immunoreactivity. Liang ZQ; Wang XX; Wang Y; Chuang DM; DiFiglia M; Chase TN; Qin ZH Neurobiol Dis; 2005 Nov; 20(2):562-73. PubMed ID: 15922606 [TBL] [Abstract][Full Text] [Related]
17. Transgenic mice expressing a Huntington's disease mutation are resistant to quinolinic acid-induced striatal excitotoxicity. Hansson O; Petersén A; Leist M; Nicotera P; Castilho RF; Brundin P Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8727-32. PubMed ID: 10411943 [TBL] [Abstract][Full Text] [Related]
18. Both apoptosis and necrosis occur following intrastriatal administration of excitotoxins. Ferrer I; Martin F; Serrano T; Reiriz J; Pérez-Navarro E; Alberch J; Macaya A; Planas AM Acta Neuropathol; 1995; 90(5):504-10. PubMed ID: 8560984 [TBL] [Abstract][Full Text] [Related]
19. NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. van Lookeren Campagne M; Lucassen PJ; Vermeulen JP; Balázs R Eur J Neurosci; 1995 Jul; 7(7):1627-40. PubMed ID: 7551189 [TBL] [Abstract][Full Text] [Related]
20. Early effects of intrastriatal injections of quinolinic acid on microtubule-associated protein-2 and neuropeptides in rat basal ganglia. Bordelon YM; Chesselet MF Neuroscience; 1999; 93(3):843-53. PubMed ID: 10473250 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]