These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 7752065)
81. Genetics of caffeine consumption and responses to caffeine. Yang A; Palmer AA; de Wit H Psychopharmacology (Berl); 2010 Aug; 211(3):245-57. PubMed ID: 20532872 [TBL] [Abstract][Full Text] [Related]
82. The role of adenosine in Alzheimer's disease. Rahman A Curr Neuropharmacol; 2009 Sep; 7(3):207-16. PubMed ID: 20190962 [TBL] [Abstract][Full Text] [Related]
83. Approaches to measuring the effects of wake-promoting drugs: a focus on cognitive function. Edgar CJ; Pace-Schott EF; Wesnes KA Hum Psychopharmacol; 2009 Jul; 24(5):371-89. PubMed ID: 19565524 [TBL] [Abstract][Full Text] [Related]
84. Caffeine: neuroprotective functions in cognition and Alzheimer's disease. Rosso A; Mossey J; Lippa CF Am J Alzheimers Dis Other Demen; 2008; 23(5):417-22. PubMed ID: 19230121 [TBL] [Abstract][Full Text] [Related]
85. Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory. Mednick SC; Cai DJ; Kanady J; Drummond SP Behav Brain Res; 2008 Nov; 193(1):79-86. PubMed ID: 18554731 [TBL] [Abstract][Full Text] [Related]
86. The potential of caffeine for functional modification from cortical synapses to neuron networks in the brain. Yoshimura H Curr Neuropharmacol; 2005 Oct; 3(4):309-16. PubMed ID: 18369398 [TBL] [Abstract][Full Text] [Related]
87. Modulation of the hypothalamo-pituitary-adrenocortical axis by caffeine. Patz MD; Day HE; Burow A; Campeau S Psychoneuroendocrinology; 2006 May; 31(4):493-500. PubMed ID: 16413973 [TBL] [Abstract][Full Text] [Related]
88. Acetylcholine and tachykinins involvement in the caffeine-induced biphasic change in intracellular Ca2+ in bovine airway smooth muscle. Montaño LM; Carbajal V; Arreola JL; Barajas-López C; Flores-Soto E; Vargas MH Br J Pharmacol; 2003 Jul; 139(6):1203-11. PubMed ID: 12871840 [TBL] [Abstract][Full Text] [Related]
89. Hippocampal noradrenaline release in awake, freely moving rats is regulated by alpha-2 adrenoceptors but not by adenosine receptors. Carter AJ J Pharmacol Exp Ther; 1997 May; 281(2):648-54. PubMed ID: 9152369 [TBL] [Abstract][Full Text] [Related]
90. Adenosine receptor-mediated modulation of dopamine release in the nucleus accumbens depends on glutamate neurotransmission and N-methyl-D-aspartate receptor stimulation. Quarta D; Borycz J; Solinas M; Patkar K; Hockemeyer J; Ciruela F; Lluis C; Franco R; Woods AS; Goldberg SR; Ferré S J Neurochem; 2004 Nov; 91(4):873-80. PubMed ID: 15525341 [TBL] [Abstract][Full Text] [Related]
91. Pharmacological interactions between magnesium ion and adenosine on monoaminergic system in the central nervous system. Okada M; Kaneko S Magnes Res; 1998 Dec; 11(4):289-305. PubMed ID: 9884987 [TBL] [Abstract][Full Text] [Related]
92. Piribedil enhances frontocortical and hippocampal release of acetylcholine in freely moving rats by blockade of alpha 2A-adrenoceptors: a dialysis comparison to talipexole and quinelorane in the absence of acetylcholinesterase inhibitors. Gobert A; Di Cara B; Cistarelli L; Millan MJ J Pharmacol Exp Ther; 2003 Apr; 305(1):338-46. PubMed ID: 12649387 [TBL] [Abstract][Full Text] [Related]
93. Caffeine enhances acetylcholine release in the hippocampus in vivo by a selective interaction with adenosine A1 receptors. Carter AJ; O'Connor WT; Carter MJ; Ungerstedt U J Pharmacol Exp Ther; 1995 May; 273(2):637-42. PubMed ID: 7752065 [TBL] [Abstract][Full Text] [Related]
94. Caffeine, adenosine receptors, and synaptic plasticity. Costenla AR; Cunha RA; de Mendonça A J Alzheimers Dis; 2010; 20 Suppl 1():S25-34. PubMed ID: 20182030 [TBL] [Abstract][Full Text] [Related]