BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 7752393)

  • 1. Renal hemodynamics in acute unilateral ureteral obstruction: contribution of endothelium-derived relaxing factor.
    Lanzone JA; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 1995 Jun; 153(6):2055-9. PubMed ID: 7752393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations of renal hemodynamics in unilateral ureteral obstruction mediated by activation of endothelin receptor subtypes.
    Bhangdia DK; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 2003 Nov; 170(5):2057-62. PubMed ID: 14532853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of endothelium-derived relaxing factor system in acute unilateral ureteral obstruction.
    Schulsinger DA; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 1997 May; 157(5):1951-6. PubMed ID: 9112570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of endothelium-derived relaxing factor in the in vivo renal vascular action of adenosine in dogs.
    Okumura M; Miura K; Yamashita Y; Yukimura T; Yamamoto K
    J Pharmacol Exp Ther; 1992 Mar; 260(3):1262-7. PubMed ID: 1545391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of endothelin-1 to renal vasoconstriction in unilateral ureteral obstruction: reversal by verapamil.
    Kahn SA; Gulmi FA; Chou SY; Mooppan UM; Kim H
    J Urol; 1997 May; 157(5):1957-62. PubMed ID: 9112571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrarenal haemodynamics and renal dysfunction in endotoxaemia: effects of nitric oxide synthase inhibition.
    Millar CG; Thiemermann C
    Br J Pharmacol; 1997 Aug; 121(8):1824-30. PubMed ID: 9283724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of nitric oxide on renal function in toxic acute renal failure in the rat.
    Schramm L; Heidbreder E; Lopau K; Schaar J; Zimmermann J; Harlos J; Teschner M; Ling H; Heidland A
    Miner Electrolyte Metab; 1996; 22(1-3):168-77. PubMed ID: 8676813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of NG-nitro-L-arginine, a nitric oxide synthase inhibitor, on norepinephrine overflow and antidiuresis induced by stimulation of renal nerves in anesthetized dogs.
    Egi Y; Matsumura Y; Murata S; Umekawa T; Hisaki K; Takaoka M; Morimoto S
    J Pharmacol Exp Ther; 1994 May; 269(2):529-35. PubMed ID: 7514219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrarenal hemodynamics and ureteral pressure during ureteral obstruction.
    Hsu CH; Kurtz TW; Rosenzweig J; Weller JM
    Invest Urol; 1977 May; 14(6):442-5. PubMed ID: 870444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A combination of Chinese herbs, Astragalus membranaceus var. mongholicus and Angelica sinensis, enhanced nitric oxide production in obstructed rat kidney.
    Meng L; Qu L; Tang J; Cai SQ; Wang H; Li X
    Vascul Pharmacol; 2007; 47(2-3):174-83. PubMed ID: 17627898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-derived relaxing factor in regulation of basal cardiopulmonary and renal function.
    Perrella MA; Hildebrand FL; Margulies KB; Burnett JC
    Am J Physiol; 1991 Aug; 261(2 Pt 2):R323-8. PubMed ID: 1877690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical performance and coronary flow adjustments to changes in workload are not affected by inhibiting nitric oxide production in isolated working rat heart.
    Beresewicz A; Woźniak M
    Pol J Pharmacol; 1993; 45(5-6):533-48. PubMed ID: 8012476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of prostaglandins and endothelium-derived relaxing factor on the renal response to acetylcholine.
    Salom MG; Lahera V; Romero JC
    Am J Physiol; 1991 Jan; 260(1 Pt 2):F145-9. PubMed ID: 1992776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of endothelium-derived relaxing factor in the pressure control of renin secretion from isolated perfused kidney.
    Scholz H; Kurtz A
    J Clin Invest; 1993 Mar; 91(3):1088-94. PubMed ID: 8383697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regional expression of inducible nitric oxide synthase in the kidney in dogs with unilateral ureteral obstruction.
    Fitzgerald J; Chou SY; Wahid A; Porush JG
    J Urol; 2001 Oct; 166(4):1524-9. PubMed ID: 11547125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide: a potential mediator of amino acid-induced renal hyperemia and hyperfiltration.
    King AJ; Troy JL; Anderson S; Neuringer JR; Gunning M; Brenner BM
    J Am Soc Nephrol; 1991 Jun; 1(12):1271-7. PubMed ID: 1912389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EDRF modulates renal hemodynamics during unilateral ureteral obstruction in the rat.
    Chevalier RL; Thornhill BA; Gomez RA
    Kidney Int; 1992 Aug; 42(2):400-6. PubMed ID: 1383595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role for nitric oxide in the hyperpermeability and hemodynamic changes induced by intravenous VEGF.
    Tilton RG; Chang KC; LeJeune WS; Stephan CC; Brock TA; Williamson JR
    Invest Ophthalmol Vis Sci; 1999 Mar; 40(3):689-96. PubMed ID: 10067972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of N omega-monomethyl-L-arginine on short-term RR interval and systolic blood pressure oscillations.
    Cordero JJ; González J; Feria M
    J Cardiovasc Pharmacol; 1994 Aug; 24(2):323-7. PubMed ID: 7526068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid non-genomic effects of aldosterone on the renal vasculature.
    Schmidt BM
    Steroids; 2008 Oct; 73(9-10):961-5. PubMed ID: 18242654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.