These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7752678)

  • 1. A multi-electrode array for combined microiontophoresis and multiple single-unit recordings.
    Haidarliu S; Shulz D; Ahissar E
    J Neurosci Methods; 1995 Feb; 56(2):125-31. PubMed ID: 7752678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A tungsten-in-glass iontophoresis assembly for studying input-output relationships in central neurons.
    Godwin DW
    J Neurosci Methods; 1993 Sep; 49(3):211-23. PubMed ID: 8271840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A tungsten electrode insulated by a concentric arrangement of glass-pipettes for iontophoresis.
    Sonnhof U; Richter DW; Steinberg R
    Pflugers Arch; 1975 Oct; 360(1):45-8. PubMed ID: 1237864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and comprehensive method for the construction, repair and recycling of single and double tungsten microelectrodes.
    Li CY; Xu XZ; Tigwell D
    J Neurosci Methods; 1995 Apr; 57(2):217-20. PubMed ID: 7609585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of extracellular and intracellular recordings from medial septum/diagonal band neurons in vitro.
    Matthews RT; Lee WL
    Neuroscience; 1991; 42(2):451-62. PubMed ID: 1680227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous multi-site recordings and iontophoretic drug and dye applications along the trigeminal system of anesthetized rats.
    Haidarliu S; Sosnik R; Ahissar E
    J Neurosci Methods; 1999 Dec; 94(1):27-40. PubMed ID: 10638813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combined recording and microiontophoresis technique for input-output analysis of single neurons in the mammalian CNS.
    Gottschaldt KM; Hicks TP; Vahle-Hinz C
    J Neurosci Methods; 1988 Apr; 23(3):233-9. PubMed ID: 3367660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microiontophoresis electrode location by neurohistological marking: Comparison of four native dyes applied from current balancing electrode channels.
    Kovács P; Dénes V; Kellényi L; Hernádi I
    J Pharmacol Toxicol Methods; 2005; 51(2):147-51. PubMed ID: 15767208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A technique for microiontophoretic study of single neurones in the behaving monkey.
    Perrett DI; Rolls ET
    J Neurosci Methods; 1985 Feb; 12(4):289-95. PubMed ID: 3921775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of extracellular and intracellular recording during extracellular microiontophoresis.
    Engberg I; Flatman JA; Lambert JD
    J Neurosci Methods; 1979 Oct; 1(3):219-33. PubMed ID: 544966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex.
    Williams JC; Rennaker RL; Kipke DR
    Brain Res Brain Res Protoc; 1999 Dec; 4(3):303-13. PubMed ID: 10592339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localising and classifying neurons from high density MEA recordings.
    Delgado Ruz I; Schultz SR
    J Neurosci Methods; 2014 Aug; 233():115-28. PubMed ID: 24954540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic sorting for multi-neuronal activity recorded with tetrodes in the presence of overlapping spikes.
    Takahashi S; Anzai Y; Sakurai Y
    J Neurophysiol; 2003 Apr; 89(4):2245-58. PubMed ID: 12612049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-barreled electrode for simultaneous iontophoresis and single unit recording during movement in awake monkeys.
    Kasser RJ; Cheney PD
    J Neurosci Methods; 1983 Mar; 7(3):235-42. PubMed ID: 6133041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multibarreled glass-coated tungsten microelectrode for both neuronal activity recording and iontophoresis in monkeys.
    Li BM; Mei ZT; Kubota K
    Neurosci Res; 1990 Jul; 8(3):214-9. PubMed ID: 2170880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multielectrode recordings from auditory neurons in the brain of a small grasshopper.
    Bhavsar MB; Heinrich R; Stumpner A
    J Neurosci Methods; 2015 Dec; 256():63-73. PubMed ID: 26335799
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural interaction in cat primary auditory cortex. Dependence on recording depth, electrode separation, and age.
    Eggermont JJ
    J Neurophysiol; 1992 Oct; 68(4):1216-28. PubMed ID: 1432079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature on the spike activity of cortical neurons in guinea pigs.
    Mednikova YS; Pasikova NV; Kopytova FV
    Neurosci Behav Physiol; 2004 Jun; 34(5):459-65. PubMed ID: 15330283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacturing and using piggy-back multibarrel electrodes for in vivo pharmacological manipulations of neural responses.
    Dondzillo A; Thornton JL; Tollin DJ; Klug A
    J Vis Exp; 2013 Jan; (71):e4358. PubMed ID: 23354055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detachable glass microelectrodes for recording action potentials in active moving organs.
    Barbic M; Moreno A; Harris TD; Kay MW
    Am J Physiol Heart Circ Physiol; 2017 Jun; 312(6):H1248-H1259. PubMed ID: 28476925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.