BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7753041)

  • 1. Hexose metabolism in pancreatic islets: effect of D-glucose on the mitochondrial redox state.
    Ramirez R; Sener A; Malaisse WJ
    Mol Cell Biochem; 1995 Jan; 142(1):43-8. PubMed ID: 7753041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hexose metabolism in pancreatic islets: regulation of the mitochondrial NADH/NAD+ ratio.
    Ramirez R; Sener A; Malaisse WJ
    Biochem Mol Med; 1995 Jun; 55(1):1-7. PubMed ID: 7551820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The coupling of metabolic to secretory events in pancreatic islets. Glucose-induced changes in mitochondrial redox state.
    Ramirez R; Rasschaert J; Sener A; Malaisse WJ
    Biochim Biophys Acta; 1996 Mar; 1273(3):263-7. PubMed ID: 8616161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function.
    Sener A; Rasschaert J; Malaisse WJ
    Biochim Biophys Acta; 1990 Aug; 1019(1):42-50. PubMed ID: 2204425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hexose metabolism in pancreatic islets. Activation of the Krebs cycle by nutrient secretagogues.
    Malaisse WJ; Sener A
    Mol Cell Biochem; 1991 Oct; 107(2):95-102. PubMed ID: 1791828
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hexose metabolism in pancreatic islets. Regulation of D-[6-14C]glucose oxidation by non-nutrient secretagogues.
    Sener A; Malaisse WJ
    Mol Cell Endocrinol; 1991 Apr; 76(1-3):1-6. PubMed ID: 1820966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coupling of metabolic to secretory events in pancreatic islets: comparison between insulin release and cytosolic redox state.
    Sener A; Malaisse WJ
    Biochem Int; 1987 May; 14(5):897-902. PubMed ID: 3331515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impairment of the mitochondrial oxidative response to D-glucose in pancreatic islets from adult rats injected with streptozotocin during the neonatal period.
    Giroix MH; Sener A; Bailbe D; Portha B; Malaisse WJ
    Diabetologia; 1990 Nov; 33(11):654-60. PubMed ID: 2150194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential sensitivity to beta-cell secretagogues in cultured rat pancreatic islets exposed to human interleukin-1 beta.
    Eizirik DL; Sandler S; Hallberg A; Bendtzen K; Sener A; Malaisse WJ
    Endocrinology; 1989 Aug; 125(2):752-9. PubMed ID: 2666106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+ controls slow NAD(P)H oscillations in glucose-stimulated mouse pancreatic islets.
    Luciani DS; Misler S; Polonsky KS
    J Physiol; 2006 Apr; 572(Pt 2):379-92. PubMed ID: 16455690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The stimulus-secretion coupling of glucose-induced insulin release. Metabolism of glucose in K+-deprived islets.
    Sener A; Kawazu S; Malaisse WJ
    Biochem J; 1980 Jan; 186(1):183-90. PubMed ID: 6989359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stimulation by D-glucose of mitochondrial oxidative events in islet cells.
    Sener A; Malaisse WJ
    Biochem J; 1987 Aug; 246(1):89-95. PubMed ID: 3314867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative NAD(P)H/flavoprotein autofluorescence imaging reveals metabolic mechanisms of pancreatic islet pyruvate response.
    Rocheleau JV; Head WS; Piston DW
    J Biol Chem; 2004 Jul; 279(30):31780-7. PubMed ID: 15148320
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hexose metabolism in pancreatic islet cells: the coupling between hexose phosphorylation and mitochondrial respiration.
    Rasschaert J; Sener A; Malaisse WJ
    Biochem Med Metab Biol; 1990 Aug; 44(1):84-95. PubMed ID: 2202346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexose metabolism in pancreatic islets. Feedback control of D-glucose oxidation by functional events.
    Malaisse WJ; Sener A
    Biochim Biophys Acta; 1988 Oct; 971(3):246-54. PubMed ID: 3139046
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.
    Civelek VN; Deeney JT; Shalosky NJ; Tornheim K; Hansford RG; Prentki M; Corkey BE
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):615-21. PubMed ID: 8809055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic exposure to beta-hydroxybutyrate inhibits glucose-induced insulin release from pancreatic islets by decreasing NADH contents.
    Takehiro M; Fujimoto S; Shimodahira M; Shimono D; Mukai E; Nabe K; Radu RG; Kominato R; Aramaki Y; Seino Y; Yamada Y
    Am J Physiol Endocrinol Metab; 2005 Feb; 288(2):E372-80. PubMed ID: 15479955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose-regulated anaplerosis and cataplerosis in pancreatic beta-cells: possible implication of a pyruvate/citrate shuttle in insulin secretion.
    Farfari S; Schulz V; Corkey B; Prentki M
    Diabetes; 2000 May; 49(5):718-26. PubMed ID: 10905479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of mitochondrial Na+-Ca2+ exchanger increases mitochondrial metabolism and potentiates glucose-stimulated insulin secretion in rat pancreatic islets.
    Lee B; Miles PD; Vargas L; Luan P; Glasco S; Kushnareva Y; Kornbrust ES; Grako KA; Wollheim CB; Maechler P; Olefsky JM; Anderson CM
    Diabetes; 2003 Apr; 52(4):965-73. PubMed ID: 12663468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Banting Lecture 1995. A lesson in metabolic regulation inspired by the glucokinase glucose sensor paradigm.
    Matschinsky FM
    Diabetes; 1996 Feb; 45(2):223-41. PubMed ID: 8549869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.