These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 7753846)

  • 21. Side chains at the membrane-water interface modulate the signaling state of a transmembrane receptor.
    Miller AS; Falke JJ
    Biochemistry; 2004 Feb; 43(7):1763-70. PubMed ID: 14967017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A simple flexible program for the computational analysis of amino acyl residue distribution in proteins: application to the distribution of aromatic versus aliphatic hydrophobic amino acids in transmembrane alpha-helical spanners of integral membrane transport proteins.
    Tsang S; Saier MH
    J Comput Biol; 1996; 3(1):185-90. PubMed ID: 8697235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amino acid distributions in integral membrane protein structures.
    Ulmschneider MB; Sansom MS
    Biochim Biophys Acta; 2001 May; 1512(1):1-14. PubMed ID: 11334619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. E(z), a depth-dependent potential for assessing the energies of insertion of amino acid side-chains into membranes: derivation and applications to determining the orientation of transmembrane and interfacial helices.
    Senes A; Chadi DC; Law PB; Walters RF; Nanda V; Degrado WF
    J Mol Biol; 2007 Feb; 366(2):436-48. PubMed ID: 17174324
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A structural dissection of amino acid substitutions in helical transmembrane proteins.
    Mokrab Y; Stevens TJ; Mizuguchi K
    Proteins; 2010 Nov; 78(14):2895-907. PubMed ID: 20715054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure-based statistical analysis of transmembrane helices.
    Baeza-Delgado C; Marti-Renom MA; Mingarro I
    Eur Biophys J; 2013 Mar; 42(2-3):199-207. PubMed ID: 22588483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association.
    Javadpour MM; Eilers M; Groesbeek M; Smith SO
    Biophys J; 1999 Sep; 77(3):1609-18. PubMed ID: 10465772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of protein transmembrane helical regions by a neural network.
    Dombi GW; Lawrence J
    Protein Sci; 1994 Apr; 3(4):557-66. PubMed ID: 8003974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physicochemical factors for discriminating between soluble and membrane proteins: hydrophobicity of helical segments and protein length.
    Mitaku S; Hirokawa T
    Protein Eng; 1999 Nov; 12(11):953-7. PubMed ID: 10585500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A knowledge-based scale for the analysis and prediction of buried and exposed faces of transmembrane domain proteins.
    Beuming T; Weinstein H
    Bioinformatics; 2004 Aug; 20(12):1822-35. PubMed ID: 14988128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. kPROT: a knowledge-based scale for the propensity of residue orientation in transmembrane segments. Application to membrane protein structure prediction.
    Pilpel Y; Ben-Tal N; Lancet D
    J Mol Biol; 1999 Dec; 294(4):921-35. PubMed ID: 10588897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amphipathic helices and membrane curvature.
    Drin G; Antonny B
    FEBS Lett; 2010 May; 584(9):1840-7. PubMed ID: 19837069
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transmembrane and water-soluble helix bundles display reverse patterns of surface roughness.
    Renthal R
    Biochem Biophys Res Commun; 1999 Oct; 263(3):714-7. PubMed ID: 10512745
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Six amino acids define a minimal dimerization sequence and stabilize a transmembrane helix dimer by close packing and hydrogen bonding.
    Weber M; Schneider D
    FEBS Lett; 2013 Jun; 587(11):1592-6. PubMed ID: 23583446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Discontinuous membrane helices in transport proteins and their correlation with function.
    Screpanti E; Hunte C
    J Struct Biol; 2007 Aug; 159(2):261-7. PubMed ID: 17350860
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robust driving forces for transmembrane helix packing.
    Benjamini A; Smit B
    Biophys J; 2012 Sep; 103(6):1227-35. PubMed ID: 22995495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motifs of serine and threonine can drive association of transmembrane helices.
    Dawson JP; Weinger JS; Engelman DM
    J Mol Biol; 2002 Feb; 316(3):799-805. PubMed ID: 11866532
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.