These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 7754694)

  • 1. [The interaction between functional neuronal connections in the rabbit cerebral cortex].
    Pavlova IV; Volkov IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(1):202-4. PubMed ID: 7754694
    [No Abstract]   [Full Text] [Related]  

  • 2. [Cross-correlational analysis of the neuronal connections of the cerebellum in the waking rabbit].
    Dunin-BarkovskiÄ­ VL; Antsiferova LI; Gusev AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1997; 47(3):513-22. PubMed ID: 9273791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The pulse train of single neurons in the rabbit cerebral cortex during natural food motivation].
    Pavlova IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(6):1202-5. PubMed ID: 8585311
    [No Abstract]   [Full Text] [Related]  

  • 4. [The interaction of rabbit neocortical neurons during natural feeding motivation].
    Pavlova IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1996; 46(1):108-16. PubMed ID: 8693774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The synaptic interactions between neurons of the sensorimotor cortex in the waking rabbit].
    Gusev AG
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1994; 44(2):360-2. PubMed ID: 8023578
    [No Abstract]   [Full Text] [Related]  

  • 6. Differences in spiking patterns among cortical neurons.
    Shinomoto S; Shima K; Tanji J
    Neural Comput; 2003 Dec; 15(12):2823-42. PubMed ID: 14629869
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of the activity of optic cortex neurons in waking rabbit by different non-visual stimuli.
    Skrebitsky VG; Bomshtein OZ
    Electroencephalogr Clin Neurophysiol; 1969 Sep; 27(3):329. PubMed ID: 4185683
    [No Abstract]   [Full Text] [Related]  

  • 8. Pulse activity of populations of cortical neurons under microwave exposures of different intensity.
    Chizhenkova RA
    Bioelectrochemistry; 2004 Jun; 63(1-2):343-6. PubMed ID: 15110300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The relation between the activity of separate areas of cerebral cortex neurons and the superslow potential fluctuations].
    Aladzhalova NA; Koshtoiants OKh
    Dokl Akad Nauk SSSR; 1967 Feb; 172(5):1226-9. PubMed ID: 5620628
    [No Abstract]   [Full Text] [Related]  

  • 10. [Pulse flows of neuronal populations of the cerebral cortex exposed to low intensity microwaves].
    Chizhenkova RA
    Biofizika; 2003; 48(3):538-45. PubMed ID: 12815866
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Characteristics, neuronal mechanisms and functional role of cortical inhibition].
    Serkov FN
    Fiziol Zh (1978); 1983; 29(2):207-15. PubMed ID: 6341093
    [No Abstract]   [Full Text] [Related]  

  • 12. Age-related decline in multiple unit action potentials of cerebral cortex correlates with the number of lipofuscin-containing neurons.
    Sharma D; Singh R
    Indian J Exp Biol; 1996 Aug; 34(8):776-81. PubMed ID: 8979484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [On the problem of the statistical processing of neuronal activity using multi-channel impulse analyzers].
    Alifanov VV; Kotliar BI; Shul'govskiÄ­ VV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1968; 18(4):745-8. PubMed ID: 5718957
    [No Abstract]   [Full Text] [Related]  

  • 14. Spontaneous neuronal discharge patterns in developing organotypic mega-co-cultures of neonatal rat cerebral cortex.
    Baker RE; Corner MA; van Pelt J
    Brain Res; 2006 Jul; 1101(1):29-35. PubMed ID: 16784729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suitability of the cingulate cortex for neural control.
    Marzullo TC; Miller CR; Kipke DR
    IEEE Trans Neural Syst Rehabil Eng; 2006 Dec; 14(4):401-9. PubMed ID: 17190032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilaterally propagating waves of spontaneous activity arising from discrete pacemakers in the neonatal mouse cerebral cortex.
    Lischalk JW; Easton CR; Moody WJ
    Dev Neurobiol; 2009 Jun; 69(7):407-14. PubMed ID: 19263415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-timing dynamics of neuronal groups.
    Izhikevich EM; Gally JA; Edelman GM
    Cereb Cortex; 2004 Aug; 14(8):933-44. PubMed ID: 15142958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proceedings: A statistical description of neuronal activity in the cerebral cortex of the unrestrained cat.
    Burns BD; Webb AC
    J Physiol; 1975 Jun; 248(1):44P-45P. PubMed ID: 1151827
    [No Abstract]   [Full Text] [Related]  

  • 19. Cortical-based neuroprosthetics: when less may be more.
    Scott SH
    Nat Neurosci; 2008 Nov; 11(11):1245-6. PubMed ID: 18956010
    [No Abstract]   [Full Text] [Related]  

  • 20. Resting our cortices by going DOWN to sleep.
    Mignot E; Huguenard JR
    Neuron; 2009 Sep; 63(6):719-21. PubMed ID: 19778500
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.