These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 775494)

  • 1. Control of cell division in Saccharomyces cerevisiae by methionyl-tRNA.
    Unger MW; Hartwell LH
    Proc Natl Acad Sci U S A; 1976 May; 73(5):1664-8. PubMed ID: 775494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methionyl-transfer ribonucleic acid deficiency during G1 arrest of Saccharomyces cerevisiae.
    Unger MW
    J Bacteriol; 1977 Apr; 130(1):11-9. PubMed ID: 323218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H
    J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of methionine synthesis in Saccharomyces cerevisiae operates through independent signals: methionyl-tRNAmet and S-adenosylmethionine.
    Surdin-Kerjan Y; Cherest H; De Robichon-Szulmajster H
    Acta Microbiol Acad Sci Hung; 1976; 23(2):109-20. PubMed ID: 788467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in the yeast Saccharomyces cerevisiae.
    Jakubowski H
    EMBO J; 1991 Mar; 10(3):593-8. PubMed ID: 2001674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translational fidelity of methionyl-tRNA synthetase.
    Abraham AK
    Biochem Soc Trans; 1997 Feb; 25(1):52S. PubMed ID: 9056950
    [No Abstract]   [Full Text] [Related]  

  • 8. The aminoacylation of transfer ribonucleic acid. Recognition of methionine by Escherichia coli methionyl-transfer ribonucleic acid synthetase.
    Old JM; Jones DS
    Biochem J; 1977 Aug; 165(2):367-73. PubMed ID: 336037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of non-permissive temperature on met-tRNA synthetase in Saccharomyces cerevisiae temperature-sensitive mutant ts 7-45.
    Sadnik I; Petersen SJ; Oktay N; McLaughlin CS; Moldave K
    Biochim Biophys Acta; 1984 Jun; 782(2):220-7. PubMed ID: 6144325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase.
    Kim HY; Ghosh G; Schulman LH; Brunie S; Jakubowski H
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11553-7. PubMed ID: 8265588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primary structure of the Saccharomyces cerevisiae gene for methionyl-tRNA synthetase.
    Walter P; Gangloff J; Bonnet J; Boulanger Y; Ebel JP; Fasiolo F
    Proc Natl Acad Sci U S A; 1983 May; 80(9):2437-41. PubMed ID: 6341994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular determinants of the yeast Arc1p-aminoacyl-tRNA synthetase complex assembly.
    Karanasios E; Simader H; Panayotou G; Suck D; Simos G
    J Mol Biol; 2007 Dec; 374(4):1077-90. PubMed ID: 17976650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analogs of methionyl-tRNA synthetase substrates containing photolabile groups.
    Wetzel R; Söll D
    Nucleic Acids Res; 1977; 4(5):1681-94. PubMed ID: 331263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Covalent methionylation of Escherichia coli methionyl-tRNA synthethase: identification of the labeled amino acid residues by matrix-assisted laser desorption-ionization mass spectrometry.
    Gillet S; Hountondji C; Schmitter JM; Blanquet S
    Protein Sci; 1997 Nov; 6(11):2426-35. PubMed ID: 9385645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nuclear origin of specific yeast mitochondrial aminoacyl-tRNA synthetases.
    Schneller JM; Schneller C; Martin R; Stahl AJ
    Nucleic Acids Res; 1976 May; 3(5):1151-65. PubMed ID: 781620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding.
    Perona JJ; Rould MA; Steitz TA; Risler JL; Zelwer C; Brunie S
    Proc Natl Acad Sci U S A; 1991 Apr; 88(7):2903-7. PubMed ID: 2011598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical and regulatory effects of methionine analogues in Saccharomyces cerevisiae.
    Colombani F; Cherest H; de Robichon-Szulmajster H
    J Bacteriol; 1975 May; 122(2):375-84. PubMed ID: 1092648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast cytoplasmic and mitochondrial methionyl-tRNA synthetases: two structural frameworks for identical functions.
    Senger B; Despons L; Walter P; Jakubowski H; Fasiolo F
    J Mol Biol; 2001 Aug; 311(1):205-16. PubMed ID: 11469869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proofreading in vivo: editing of homocysteine by methionyl-tRNA synthetase in Escherichia coli.
    Jakubowski H
    Proc Natl Acad Sci U S A; 1990 Jun; 87(12):4504-8. PubMed ID: 2191291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amino acid binding by the class I aminoacyl-tRNA synthetases: role for a conserved proline in the signature sequence.
    Burbaum JJ; Schimmel P
    Protein Sci; 1992 May; 1(5):575-81. PubMed ID: 1304356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.