These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7755891)

  • 21. Widespread activation of barrel cortex by small numbers of neonatally spared whiskers.
    Maier DL; Marron M; He Y; Joe-Yen S; McCasland JS
    Somatosens Mot Res; 1996; 13(3-4):245-53. PubMed ID: 9110427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of sensory deprivation upon a single cortical vibrissal column: a 2DG study.
    Kossut M
    Exp Brain Res; 1992; 90(3):639-42. PubMed ID: 1426120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time course of experience-dependent synaptic potentiation and depression in barrel cortex of adolescent rats.
    Glazewski S; Fox K
    J Neurophysiol; 1996 Apr; 75(4):1714-29. PubMed ID: 8727408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Developmental regulation of plasticity in cat somatosensory cortex.
    Juliano SL; Eslin DE; Tommerdahl M
    J Neurophysiol; 1994 Oct; 72(4):1706-16. PubMed ID: 7823096
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Age-dependent response of the mouse barrel cortex to sensory deprivation: a 2-deoxyglucose study.
    Skibinska A; Glazewski S; Fox K; Kossut M
    Exp Brain Res; 2000 May; 132(1):134-8. PubMed ID: 10836643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional organization in cortical barrels of normal and vibrissae-damaged mice: a (3H) 2-deoxyglucose study.
    Durham D; Woolsey TA
    J Comp Neurol; 1985 May; 235(1):97-110. PubMed ID: 2985659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Focal stroke in the barrel cortex of rats enhances ipsilateral response to vibrissal input.
    Jablonka J; Kossut M
    Acta Neurobiol Exp (Wars); 2006; 66(3):261-6. PubMed ID: 17133958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experience-dependent plasticity of adult rat S1 cortex requires local NMDA receptor activation.
    Rema V; Armstrong-James M; Ebner FF
    J Neurosci; 1998 Dec; 18(23):10196-206. PubMed ID: 9822773
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasticity in the barrel cortex of the adult mouse: effects of chronic stimulation upon deoxyglucose uptake in the behaving animal.
    Welker E; Rao SB; Dörfl J; Melzer P; van der Loos H
    J Neurosci; 1992 Jan; 12(1):153-70. PubMed ID: 1729433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use-dependent plasticity in barrel cortex: intrinsic signal imaging reveals functional expansion of spared whisker representation into adjacent deprived columns.
    Dubroff JG; Stevens RT; Hitt J; Maier DL; McCasland JS; Hodge CJ
    Somatosens Mot Res; 2005; 22(1-2):25-35. PubMed ID: 16191755
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acute whisker removal reduces neuronal activity in barrels of mouse SmL cortex.
    Durham D; Woolsey TA
    J Comp Neurol; 1978 Apr; 178(4):629-44. PubMed ID: 632373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experience-dependent plasticity of rat barrel cortex: redistribution of activity across barrel-columns.
    Lebedev MA; Mirabella G; Erchova I; Diamond ME
    Cereb Cortex; 2000 Jan; 10(1):23-31. PubMed ID: 10639392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Partial denervation of the whiskerpad in adult mice: altered patterns of metabolic activity in barrel cortex.
    Bronchti G; Corthésy ME; Welker E
    Eur J Neurosci; 1999 Aug; 11(8):2847-55. PubMed ID: 10457181
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional plasticity and neurotransmitter receptor binding in the vibrissal barrel cortex.
    Kossut M; Głazewski S; Siucińska E; Skangiel-Kramska J
    Acta Neurobiol Exp (Wars); 1993; 53(1):161-73. PubMed ID: 8391197
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of supragranular layers to sensory processing and plasticity in adult rat barrel cortex.
    Huang W; Armstrong-James M; Rema V; Diamond ME; Ebner FF
    J Neurophysiol; 1998 Dec; 80(6):3261-71. PubMed ID: 9862920
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of postnatal blockade of cortical activity with tetrodotoxin upon the development and plasticity of vibrissa-related patterns in the somatosensory cortex of hamsters.
    Chiaia NL; Fish SE; Bauer WR; Figley BA; Eck M; Bennett-Clarke CA; Rhoades RW
    Somatosens Mot Res; 1994; 11(3):219-28. PubMed ID: 7887054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neonatal serotonin depletion modifies development but not plasticity in rat barrel cortex.
    Turlejski K; Djavadian RL; Kossut M
    Neuroreport; 1997 May; 8(8):1823-8. PubMed ID: 9223059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neither peripheral nerve input nor cortical NMDA receptor activity are necessary for recovery of a disrupted barrel pattern in rat somatosensory cortex.
    Boylan CB; Kesterson KL; Bennett-Clarke CA; Chiaia NL; Rhoades RW
    Brain Res Dev Brain Res; 2001 Jul; 129(1):95-106. PubMed ID: 11454416
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of whisker trimming on GABA(A) receptor binding in the barrel cortex of developing and adult rats.
    Fuchs JL; Salazar E
    J Comp Neurol; 1998 Jun; 395(2):209-16. PubMed ID: 9603373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABA immunoreactivity in mouse barrel field after aversive and appetitive classical conditioning training involving facial vibrissae.
    Siucinska E; Kossut M; Stewart MG
    Brain Res; 1999 Oct; 843(1-2):62-70. PubMed ID: 10528111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.