BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 7756261)

  • 1. Electron transfer from cytochrome c to 8-azido-ATP-modified cytochrome c oxidase.
    Lin J; Wu S; Chan SI
    Biochemistry; 1995 May; 34(19):6335-43. PubMed ID: 7756261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 8-Azido-ATP modification of cytochrome c: retardation of its electron-transfer activity to cytochrome c oxidase.
    Lin J; Wu S; Lau WT; Chan SI
    Biochemistry; 1995 Feb; 34(8):2678-85. PubMed ID: 7873550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies of 8-azido-ATP adducts reveal two mechanisms by which ATP binding to cytochrome c could inhibit respiration.
    Craig DB; Wallace CJ
    Biochemistry; 1995 Feb; 34(8):2686-93. PubMed ID: 7873551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic strength dependence of the kinetics of electron transfer from bovine mitochondrial cytochrome c to bovine cytochrome c oxidase.
    Hazzard JT; Rong SY; Tollin G
    Biochemistry; 1991 Jan; 30(1):213-22. PubMed ID: 1846288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific effects of ATP on the kinetics of reconstituted bovine heart cytochrome-c oxidase.
    Hüther FJ; Kadenbach B
    FEBS Lett; 1986 Oct; 207(1):89-94. PubMed ID: 3021530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Definition of the Interaction Domain and Electron Transfer Route between Cytochrome c and Cytochrome Oxidase.
    Scharlau M; Geren L; Zhen EY; Ma L; Rajagukguk R; Ferguson-Miller S; Durham B; Millett F
    Biochemistry; 2019 Oct; 58(40):4125-4135. PubMed ID: 31532642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracomplex electron transfer between ruthenium-cytochrome c derivatives and cytochrome c oxidase.
    Pan LP; Hibdon S; Liu RQ; Durham B; Millett F
    Biochemistry; 1993 Aug; 32(33):8492-8. PubMed ID: 8395206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of 8-azido-ATP and other anions on the activity of cytochrome c oxidase.
    Hüther FJ; Berden J; Kadenbach B
    J Bioenerg Biomembr; 1988 Aug; 20(4):503-16. PubMed ID: 2851591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraliposomal nucleotides change the kinetics of reconstituted cytochrome c oxidase from bovine heart but not from Paracoccus denitrificans.
    Hüther FJ; Kadenbach B
    Biochem Biophys Res Commun; 1988 Jun; 153(2):525-34. PubMed ID: 2838021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. Ii. Rapid kinetic analysis of electron transfer from cytochrome c to Rhodobacter sphaeroides cytochrome oxidase surface mutants.
    Wang K; Zhen Y; Sadoski R; Grinnell S; Geren L; Ferguson-Miller S; Durham B; Millett F
    J Biol Chem; 1999 Dec; 274(53):38042-50. PubMed ID: 10608873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The number of nucleotide binding sites in cytochrome C oxidase.
    Rieger T; Napiwotzki J; Hüther FJ; Kadenbach B
    Biochem Biophys Res Commun; 1995 Dec; 217(1):34-40. PubMed ID: 8526931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes.
    Salamon Z; Tollin G
    Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of cytochrome c oxidase by interaction of ATP at two binding sites, one on subunit VIa.
    Taanman JW; Turina P; Capaldi RA
    Biochemistry; 1994 Oct; 33(39):11833-41. PubMed ID: 7918401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anions induce conformational changes and influence the activity and photoaffinity-labelling by 8-azido-ATP of isolated cytochrome c oxidase.
    Reimann A; Hüther FJ; Berden JA; Kadenbach B
    Biochem J; 1988 Sep; 254(3):723-30. PubMed ID: 2848497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The rate-limiting step and nonhyperbolic kinetics in the oxidation of ferrocytochrome c catalyzed by cytochrome c oxidase.
    Brzezinski P; Thörnström PE; Malmström BG
    FEBS Lett; 1986 Jan; 194(1):1-5. PubMed ID: 3000820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP binding to bovine heart cytochrome c oxidase. A photoaffinity labelling study.
    Montecucco C; Schiavo G; Bisson R
    Biochem J; 1986 Feb; 234(1):241-3. PubMed ID: 3010954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stopped-flow, laser-flash photolysis studies on the reactions of CO and O2 with the cytochrome caa3 complex from Bacillus subtilis: conservation of electron transfer pathways from cytochrome c to O2.
    Hill BC
    Biochemistry; 1996 May; 35(19):6136-43. PubMed ID: 8634256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox proteins as electron acceptors from chlorophyll triplet state in lipid bilayer vesicles: kinetics of reduction of membrane reconstituted cytochrome c oxidase mediated by 2,5-di-t-butyl benzoquinone and cytochrome c.
    Chamupathi VG; Moezzi DM; Tollin G
    Photochem Photobiol; 1990 Oct; 52(4):883-91. PubMed ID: 1965230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutants of the CuA site in cytochrome c oxidase of Rhodobacter sphaeroides: II. Rapid kinetic analysis of electron transfer.
    Wang K; Geren L; Zhen Y; Ma L; Ferguson-Miller S; Durham B; Millett F
    Biochemistry; 2002 Feb; 41(7):2298-304. PubMed ID: 11841222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP binding to cytochrome c diminishes electron flow in the mitochondrial respiratory pathway.
    Craig DB; Wallace CJ
    Protein Sci; 1993 Jun; 2(6):966-76. PubMed ID: 8391357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.