These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
766 related articles for article (PubMed ID: 7756523)
1. Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Granzier HL; Irving TC Biophys J; 1995 Mar; 68(3):1027-44. PubMed ID: 7756523 [TBL] [Abstract][Full Text] [Related]
2. Nonuniform elasticity of titin in cardiac myocytes: a study using immunoelectron microscopy and cellular mechanics. Granzier H; Helmes M; Trombitás K Biophys J; 1996 Jan; 70(1):430-42. PubMed ID: 8770219 [TBL] [Abstract][Full Text] [Related]
3. Titin elasticity and mechanism of passive force development in rat cardiac myocytes probed by thin-filament extraction. Granzier H; Kellermayer M; Helmes M; Trombitás K Biophys J; 1997 Oct; 73(4):2043-53. PubMed ID: 9336199 [TBL] [Abstract][Full Text] [Related]
4. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring. Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977 [TBL] [Abstract][Full Text] [Related]
5. Expression of titin isoforms in red and white muscle fibres of carp (Cyprinus carpio L.) exposed to different sarcomere strains during swimming. Spierts IL; Akster HA; Granzier HL J Comp Physiol B; 1997 Nov; 167(8):543-51. PubMed ID: 9404015 [TBL] [Abstract][Full Text] [Related]
6. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments. Granzier HL; Wang K Biophys J; 1993 Nov; 65(5):2141-59. PubMed ID: 8298040 [TBL] [Abstract][Full Text] [Related]
7. Passive force generation and titin isoforms in mammalian skeletal muscle. Horowits R Biophys J; 1992 Feb; 61(2):392-8. PubMed ID: 1547327 [TBL] [Abstract][Full Text] [Related]
8. Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle. Fukuda N; Wu Y; Farman G; Irving TC; Granzier H Pflugers Arch; 2005 Feb; 449(5):449-57. PubMed ID: 15688246 [TBL] [Abstract][Full Text] [Related]
9. Restoring force development by titin/connectin and assessment of Ig domain unfolding. Preetha N; Yiming W; Helmes M; Norio F; Siegfried L; Granzier H J Muscle Res Cell Motil; 2005; 26(6-8):307-17. PubMed ID: 16470334 [TBL] [Abstract][Full Text] [Related]
10. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R Proc Natl Acad Sci U S A; 1991 Aug; 88(16):7101-5. PubMed ID: 1714586 [TBL] [Abstract][Full Text] [Related]
11. Cardiac titin: molecular basis of elasticity and cellular contribution to elastic and viscous stiffness components in myocardium. Linke WA; Fernandez JM J Muscle Res Cell Motil; 2002; 23(5-6):483-97. PubMed ID: 12785099 [TBL] [Abstract][Full Text] [Related]
12. Mechanical properties of titin isoforms. Granzier H; Helmes M; Cazorla O; McNabb M; Labeit D; Wu Y; Yamasaki R; Redkar A; Kellermayer M; Labeit S; Trombitás K Adv Exp Med Biol; 2000; 481():283-300; discussion 300-4. PubMed ID: 10987079 [TBL] [Abstract][Full Text] [Related]
13. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension. Trombitás K; Granzier H Am J Physiol; 1997 Aug; 273(2 Pt 1):C662-70. PubMed ID: 9277364 [TBL] [Abstract][Full Text] [Related]
14. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness. Neagoe C; Opitz CA; Makarenko I; Linke WA J Muscle Res Cell Motil; 2003; 24(2-3):175-89. PubMed ID: 14609029 [TBL] [Abstract][Full Text] [Related]
15. Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity. Trombitás K; Redkar A; Centner T; Wu Y; Labeit S; Granzier H Biophys J; 2000 Dec; 79(6):3226-34. PubMed ID: 11106626 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of titin modulates passive stiffness of cardiac muscle in a titin isoform-dependent manner. Fukuda N; Wu Y; Nair P; Granzier HL J Gen Physiol; 2005 Mar; 125(3):257-71. PubMed ID: 15738048 [TBL] [Abstract][Full Text] [Related]
17. Titin develops restoring force in rat cardiac myocytes. Helmes M; Trombitás K; Granzier H Circ Res; 1996 Sep; 79(3):619-26. PubMed ID: 8781495 [TBL] [Abstract][Full Text] [Related]
18. Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Fukuda N; Sasaki D; Ishiwata S; Kurihara S Circulation; 2001 Oct; 104(14):1639-45. PubMed ID: 11581142 [TBL] [Abstract][Full Text] [Related]
19. Titin determines the Frank-Starling relation in early diastole. Helmes M; Lim CC; Liao R; Bharti A; Cui L; Sawyer DB J Gen Physiol; 2003 Feb; 121(2):97-110. PubMed ID: 12566538 [TBL] [Abstract][Full Text] [Related]
20. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension. Krüger M; Linke WA J Muscle Res Cell Motil; 2006; 27(5-7):435-44. PubMed ID: 16897574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]