These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 7756526)

  • 21. Salt-dependent DNA superhelix diameter studied by small angle neutron scattering measurements and Monte Carlo simulations.
    Hammermann M; Brun N; Klenin KV; May R; Tóth K; Langowski J
    Biophys J; 1998 Dec; 75(6):3057-63. PubMed ID: 9826625
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive binding exchange between alkali metal ions (K+, Rb+, and Cs+) and Na+ ions bound to the dimeric quadruplex [d(G4T4G4)]2: a 23Na and 1H NMR study.
    Cesare Marincola F; Virno A; Randazzo A; Mocci F; Saba G; Lai A
    Magn Reson Chem; 2009 Dec; 47(12):1036-42. PubMed ID: 19757406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Specificity of Na+ binding to phosphatidylserine vesicles from a 23Na NMR relaxation rate study.
    Kurland R; Newton C; Nir S; Papahadjopoulos D
    Biochim Biophys Acta; 1979 Feb; 551(1):137-47. PubMed ID: 427149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanochemical study of NaDNA and NaDNA-netropsin fibers in ethanol-water and trifluoroethanol-water solutions.
    Song Z; Rupprecht A; Fritzsche H
    Biophys J; 1995 Mar; 68(3):1050-62. PubMed ID: 7756525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Competitive binding of Mg2+, Ca2+, Na+, and K+ ions to DNA in oriented DNA fibers: experimental and Monte Carlo simulation results.
    Korolev N; Lyubartsev AP; Rupprecht A; Nordenskiöld L
    Biophys J; 1999 Nov; 77(5):2736-49. PubMed ID: 10545373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Displacement of sodium ions by surfactant ions from DNA. A 23Na-NMR investigation.
    Delville A; Laszlo P; Schyns R
    Biophys Chem; 1986 Jul; 24(2):121-33. PubMed ID: 3756306
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 23Na NMR study of the interaction between DNA and the platinum (II) compounds: cis-DDP, trans-DDP and TDP.
    Mallet G; Ansiss S; Vasilescu D
    J Biomol Struct Dyn; 1998 Aug; 16(1):21-33. PubMed ID: 9745891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 23Na NMR study of DNA thermal transconformation in presence of cysteamine radioprotector.
    Lematre J; Mallet G; Vasilescu D
    Physiol Chem Phys Med NMR; 1988; 20(3):213-9. PubMed ID: 3244802
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 23Na NMR studies of Na-DNA in the solid state.
    He H; Klinowski J; Saba G; Casu M; Lai A
    Solid State Nucl Magn Reson; 1998 Jan; 10(3):169-75. PubMed ID: 9550345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competitive interactions of Co(NH3)6(3+) and Na+ with helical B-DNA probed by 59Co and 23Na NMR.
    Braunlin WH; Anderson CF; Record MT
    Biochemistry; 1987 Dec; 26(24):7724-31. PubMed ID: 3427101
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 23Na and flame photometric studies of the NMR visibility of sodium in rat muscle.
    Buist RJ; Deslauriers R; Saunders JK; Mainwood GW
    Can J Physiol Pharmacol; 1991 Nov; 69(11):1663-9. PubMed ID: 1804513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Application of polyelectrolyte theories for analysis of DNA melting in the presence of Na+ and Mg2+ ions.
    Korolev N; Lyubartsev AP; Nordenskiöld L
    Biophys J; 1998 Dec; 75(6):3041-56. PubMed ID: 9826624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures.
    Owczarzy R; You Y; Moreira BG; Manthey JA; Huang L; Behlke MA; Walder JA
    Biochemistry; 2004 Mar; 43(12):3537-54. PubMed ID: 15035624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The importance of coulombic end effects: experimental characterization of the effects of oligonucleotide flanking charges on the strength and salt dependence of oligocation (L8+) binding to single-stranded DNA oligomers.
    Zhang W; Ni H; Capp MW; Anderson CF; Lohman TM; Record MT
    Biophys J; 1999 Feb; 76(2):1008-17. PubMed ID: 9916032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sodium-23 and potassium-39 nuclear magnetic resonance relaxation in eye lens. Examples of quadrupole ion magnetic relaxation in a crowded protein environment.
    Stevens A; Paschalis P; Schleich T
    Biophys J; 1992 May; 61(5):1061-75. PubMed ID: 1600073
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sodium-23 NMR spin-lattice relaxation rate studies of mono- and bis-intercalation in DNA.
    Eggert H; Dinesen J; Jacobsen JP
    Biochemistry; 1989 Apr; 28(8):3332-7. PubMed ID: 2742839
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear spin relaxation of sodium cations in bacteriophage Pf1 solutions.
    Sobieski DN; Krueger NR; Vyas S; Augustine MP
    J Chem Phys; 2006 Dec; 125(24):244509. PubMed ID: 17199357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sodium-23 NMR relaxation times in body fluids.
    Shinar H; Navon G
    Magn Reson Med; 1986 Dec; 3(6):927-34. PubMed ID: 3821467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Grand canonical Monte Carlo molecular and thermodynamic predictions of ion effects on binding of an oligocation (L8+) to the center of DNA oligomers.
    Olmsted MC; Bond JP; Anderson CF; Record MT
    Biophys J; 1995 Feb; 68(2):634-47. PubMed ID: 7696515
    [TBL] [Abstract][Full Text] [Related]  

  • 40. K(+)-ribosome interactions determine the large enhancements of 39K NMR transverse relaxation rates in the cytoplasm of Escherichia coli K-12.
    Guttman HJ; Cayley S; Li M; Anderson CF; Record MT
    Biochemistry; 1995 Jan; 34(4):1393-404. PubMed ID: 7827087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.