These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 7756546)
1. Membrane potential and input resistance are ambiguous measures of sealing of transected cable-like structures. Krause TL; Magarshak Y; Fishman HM; Bittner GD Biophys J; 1995 Mar; 68(3):795-9. PubMed ID: 7756546 [TBL] [Abstract][Full Text] [Related]
2. Extent and mechanism of sealing in transected giant axons of squid and earthworms. Krause TL; Fishman HM; Ballinger ML; Bittner GD J Neurosci; 1994 Nov; 14(11 Pt 1):6638-51. PubMed ID: 7965066 [TBL] [Abstract][Full Text] [Related]
3. Resealing of the proximal and distal cut ends of transected axons: electrophysiological and ultrastructural analysis. Spira ME; Benbassat D; Dormann A J Neurobiol; 1993 Mar; 24(3):300-16. PubMed ID: 8492108 [TBL] [Abstract][Full Text] [Related]
4. A model for axonal propagation incorporating both radial and axial ionic transport. van Egeraat JM; Wikswo JP Biophys J; 1993 Apr; 64(4):1287-98. PubMed ID: 8388269 [TBL] [Abstract][Full Text] [Related]
5. Barrier permeability at cut axonal ends progressively decreases until an ionic seal is formed. Eddleman CS; Bittner GD; Fishman HM Biophys J; 2000 Oct; 79(4):1883-90. PubMed ID: 11023894 [TBL] [Abstract][Full Text] [Related]
6. Calcium dependence of membrane sealing at the cut end of the cockroach giant axon. Yawo H; Kuno M J Neurosci; 1985 Jun; 5(6):1626-32. PubMed ID: 4009251 [TBL] [Abstract][Full Text] [Related]
7. Sealing frequency of B104 cells declines exponentially with decreasing transection distance from the axon hillock. McGill CH; Bhupanapadu Sunkesula SR; Poon AD; Mikesh M; Bittner GD Exp Neurol; 2016 May; 279():149-158. PubMed ID: 26851541 [TBL] [Abstract][Full Text] [Related]
8. A new method for extracting cable parameters from input impedance data. Cox SJ Math Biosci; 1998 Oct; 153(1):1-12. PubMed ID: 9810158 [TBL] [Abstract][Full Text] [Related]
9. Cable equation for a myelinated axon derived from its microstructure. Basser PJ Med Biol Eng Comput; 1993 Jul; 31 Suppl():S87-92. PubMed ID: 8231331 [TBL] [Abstract][Full Text] [Related]
10. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord. Pinzon A; Calancie B; Oudega M; Noga BR J Neurosci Res; 2001 Jun; 64(5):533-41. PubMed ID: 11391708 [TBL] [Abstract][Full Text] [Related]
11. Simulating stimulating bulges: the electrical meddling of neurons. Hentall ID P R Health Sci J; 1988 Aug; 7(2):144-8. PubMed ID: 2460889 [TBL] [Abstract][Full Text] [Related]
12. Propagation through electrically coupled cells. Effects of a resistive barrier. Joyner RW; Veenstra R; Rawling D; Chorro A Biophys J; 1984 May; 45(5):1017-25. PubMed ID: 6733238 [TBL] [Abstract][Full Text] [Related]
13. Generalized cable equation model for myelinated nerve fiber. Einziger PD; Livshitz LM; Mizrahi J IEEE Trans Biomed Eng; 2005 Oct; 52(10):1632-42. PubMed ID: 16235649 [TBL] [Abstract][Full Text] [Related]
14. Regenerating axons are not required to induce the formation of a Schwann cell cable in a silicone chamber. Williams LR; Azzam NA; Zalewski AA; Azzam RN Exp Neurol; 1993 Mar; 120(1):49-59. PubMed ID: 8477828 [TBL] [Abstract][Full Text] [Related]
15. Analysis of a linear model for electrical stimulation of axons--critical remarks on the "activating function concept". Zierhofer CM IEEE Trans Biomed Eng; 2001 Feb; 48(2):173-84. PubMed ID: 11296873 [TBL] [Abstract][Full Text] [Related]
16. Classification of the extracellular fields produced by activated neural structures. Richerson S; Ingram M; Perry D; Stecker MM Biomed Eng Online; 2005 Sep; 4():53. PubMed ID: 16146569 [TBL] [Abstract][Full Text] [Related]
17. A modified cable model analysis of microscopic axonal and dendritic processes. Pongrácz F Acta Physiol Hung; 1988; 72(1):47-65. PubMed ID: 3421128 [TBL] [Abstract][Full Text] [Related]
18. Effect of stress on the membrane capacitance of the auditory outer hair cell. Iwasa KH Biophys J; 1993 Jul; 65(1):492-8. PubMed ID: 8369452 [TBL] [Abstract][Full Text] [Related]
19. Convection-diffusion as a model of the early current in the giant axon. Hägglund JV Ups J Med Sci; 1972; 77(2):77-90. PubMed ID: 5070586 [No Abstract] [Full Text] [Related]
20. Optimization of the leak conductance in the squid giant axon. Seely J; Crotty P Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021906. PubMed ID: 20866836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]