These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 7756551)
1. Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo. Guttman HJ; Anderson CF; Record MT Biophys J; 1995 Mar; 68(3):835-46. PubMed ID: 7756551 [TBL] [Abstract][Full Text] [Related]
3. Excluded volume in solvation: sensitivity of scaled-particle theory to solvent size and density. Tang KE; Bloomfield VA Biophys J; 2000 Nov; 79(5):2222-34. PubMed ID: 11053104 [TBL] [Abstract][Full Text] [Related]
4. The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Berg OG Biopolymers; 1990; 30(11-12):1027-37. PubMed ID: 2081264 [TBL] [Abstract][Full Text] [Related]
5. Crowding and the polymerization of sickle hemoglobin. Ferrone FA; Rotter MA J Mol Recognit; 2004; 17(5):497-504. PubMed ID: 15362110 [TBL] [Abstract][Full Text] [Related]
6. Free energy of sickle hemoglobin polymerization: a scaled-particle treatment for use with dextran as a crowding agent. Liu Z; Weng W; Bookchin RM; Lew VL; Ferrone FA Biophys J; 2008 May; 94(9):3629-34. PubMed ID: 18212015 [TBL] [Abstract][Full Text] [Related]
7. Monomer diffusion into polymer domains in sickle hemoglobin. Cho MR; Ferrone FA Biophys J; 1990 Oct; 58(4):1067-73. PubMed ID: 2248990 [TBL] [Abstract][Full Text] [Related]
9. Spinodal lines and Flory-Huggins free-energies for solutions of human hemoglobins HbS and HbA. San Biagio PL; Palma MU Biophys J; 1991 Aug; 60(2):508-12. PubMed ID: 1912284 [TBL] [Abstract][Full Text] [Related]
10. Static and dynamic light scattering approach to the hydration of hemoglobin and its supertetramers in the presence of osmolites. Arosio D; Kwansa HE; Gering H; Piszczek G; Bucci E Biopolymers; 2002 Jan; 63(1):1-11. PubMed ID: 11754343 [TBL] [Abstract][Full Text] [Related]
11. Kinetics of the polymerization of hemoglobin in high and low phosphate buffers. Adachi K; Asakura T Blood Cells; 1982; 8(2):213-24. PubMed ID: 6186320 [TBL] [Abstract][Full Text] [Related]
12. Interpretation of the osmotic behavior of sickle cell hemoglobin solutions: different interactions among monomers and polymers. Han J; Herzfeld J Biopolymers; 1998 Apr; 45(4):299-306. PubMed ID: 9491759 [TBL] [Abstract][Full Text] [Related]
13. Measurement of the hemoglobin concentration in deoxyhemoglobin S polymers and characterization of the polymer water compartment. Bookchin RM; Balazs T; Lew VL J Mol Biol; 1994 Nov; 244(1):100-9. PubMed ID: 7966313 [TBL] [Abstract][Full Text] [Related]
14. Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Shimizu S Proc Natl Acad Sci U S A; 2004 Feb; 101(5):1195-9. PubMed ID: 14732698 [TBL] [Abstract][Full Text] [Related]
15. Thermodynamic nonideality in macromolecular solutions: interpretation of virial coefficients. Wills PR; Comper WD; Winzor DJ Arch Biochem Biophys; 1993 Jan; 300(1):206-12. PubMed ID: 8424654 [TBL] [Abstract][Full Text] [Related]
16. Heterogeneous nucleation and crowding in sickle hemoglobin: an analytic approach. Ferrone FA; Ivanova M; Jasuja R Biophys J; 2002 Jan; 82(1 Pt 1):399-406. PubMed ID: 11751326 [TBL] [Abstract][Full Text] [Related]
17. Nonideality and the nucleation of sickle hemoglobin. Ivanova M; Jasuja R; Kwong S; Briehl RW; Ferrone FA Biophys J; 2000 Aug; 79(2):1016-22. PubMed ID: 10920031 [TBL] [Abstract][Full Text] [Related]
18. COVOL: an interactive program for evaluating second virial coefficients from the triaxial shape or dimensions of rigid macromolecules. Harding SE; Horton JC; Jones S; Thornton JM; Winzor DJ Biophys J; 1999 May; 76(5):2432-8. PubMed ID: 10233060 [TBL] [Abstract][Full Text] [Related]
19. Temperature and domain size dependence of sickle cell hemoglobin polymer melting in high concentration phosphate buffer. Louderback JG; Aroutiounian SK; Kerr WC; Ballas SK; Kim-Shapiro DB Biophys Chem; 1999 Jul; 80(1):21-30. PubMed ID: 10457594 [TBL] [Abstract][Full Text] [Related]
20. The entropically favored osmotic "compression" of sickle cell hemoglobin gels. Chik JK; Parsegian VA Biopolymers; 2001 Aug; 59(2):120-4. PubMed ID: 11373725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]