These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1143 related articles for article (PubMed ID: 7756552)
1. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552 [TBL] [Abstract][Full Text] [Related]
2. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related]
3. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 1992 Nov; 31(46):11579-88. PubMed ID: 1445893 [TBL] [Abstract][Full Text] [Related]
4. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034 [TBL] [Abstract][Full Text] [Related]
5. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biophys J; 2004 Oct; 87(4):2470-82. PubMed ID: 15454444 [TBL] [Abstract][Full Text] [Related]
6. Comparative differential scanning calorimetric and FTIR and 31P-NMR spectroscopic studies of the effects of cholesterol and androstenol on the thermotropic phase behavior and organization of phosphatidylcholine bilayers. McMullen TP; Lewis RN; McElhaney RN Biophys J; 1994 Mar; 66(3 Pt 1):741-52. PubMed ID: 8011906 [TBL] [Abstract][Full Text] [Related]
7. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylethanolamine bilayers. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 1999 Jan; 1416(1-2):119-34. PubMed ID: 9889344 [TBL] [Abstract][Full Text] [Related]
8. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR spectroscopic studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 1995 Feb; 34(7):2362-71. PubMed ID: 7857946 [TBL] [Abstract][Full Text] [Related]
9. Differential scanning calorimetric and Fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biophys J; 2000 Oct; 79(4):2056-65. PubMed ID: 11023909 [TBL] [Abstract][Full Text] [Related]
10. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes. McMullen TP; Lewis RN; McElhaney RN Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990 [TBL] [Abstract][Full Text] [Related]
11. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232 [TBL] [Abstract][Full Text] [Related]
12. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
13. Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studies. Lohner K; Staudegger E; Prenner EJ; Lewis RN; Kriechbaum M; Degovics G; McElhaney RN Biochemistry; 1999 Dec; 38(50):16514-28. PubMed ID: 10600113 [TBL] [Abstract][Full Text] [Related]
14. A differential scanning calorimetric and 31P NMR spectroscopic study of the effect of transmembrane alpha-helical peptides on the lamellar-reversed hexagonal phase transition of phosphatidylethanolamine model membranes. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(3):760-8. PubMed ID: 11170393 [TBL] [Abstract][Full Text] [Related]
15. Calorimetric and spectroscopic studies of the polymorphic phase behavior of a homologous series of n-saturated 1,2-diacyl phosphatidylethanolamines. Lewis RN; McElhaney RN Biophys J; 1993 Apr; 64(4):1081-96. PubMed ID: 8494972 [TBL] [Abstract][Full Text] [Related]
16. A calorimetric and spectroscopic comparison of the effects of lathosterol and cholesterol on the thermotropic phase behavior and organization of dipalmitoylphosphatidylcholine bilayer membranes. Benesch MG; Mannock DA; Lewis RN; McElhaney RN Biochemistry; 2011 Nov; 50(46):9982-97. PubMed ID: 21951051 [TBL] [Abstract][Full Text] [Related]
18. Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines. Lewis RN; McElhaney RN Biophys J; 2000 Oct; 79(4):2043-55. PubMed ID: 11023908 [TBL] [Abstract][Full Text] [Related]
19. Differential scanning calorimetric study of the effect of the antimicrobial peptide gramicidin S on the thermotropic phase behavior of phosphatidylcholine, phosphatidylethanolamine and phosphatidylglycerol lipid bilayer membranes. Prenner EJ; Lewis RN; Kondejewski LH; Hodges RS; McElhaney RN Biochim Biophys Acta; 1999 Mar; 1417(2):211-23. PubMed ID: 10082797 [TBL] [Abstract][Full Text] [Related]
20. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes. Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]