These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7756565)

  • 1. On the expected relationship between Gibbs energy of ATP hydrolysis and muscle performance.
    Westerhoff HV; van Echteld CJ; Jeneson JA
    Biophys Chem; 1995 Apr; 54(2):137-42. PubMed ID: 7756565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-linear relationship between Gibbs free energy of ATP hydrolysis and power output in human forearm muscle.
    Jeneson JA; Westerhoff HV; Brown TR; Van Echteld CJ; Berger R
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1474-84. PubMed ID: 7611368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative mathematical expressions for accurate in vivo assessment of cytosolic [ADP] and DeltaG of ATP hydrolysis in the human brain and skeletal muscle.
    Iotti S; Frassineti C; Sabatini A; Vacca A; Barbiroli B
    Biochim Biophys Acta; 2005 Jun; 1708(2):164-77. PubMed ID: 15953473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protecting the cellular energy state during contractions: role of AMP deaminase.
    Hancock CR; Brault JJ; Terjung RL
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A metabolic control analysis of kinetic controls in ATP free energy metabolism in contracting skeletal muscle.
    Jeneson JA; Westerhoff HV; Kushmerick MJ
    Am J Physiol Cell Physiol; 2000 Sep; 279(3):C813-32. PubMed ID: 10942732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recovery of free ADP, Pi, and free energy of ATP hydrolysis in human skeletal muscle.
    Wackerhage H; Hoffmann U; Essfeld D; Leyk D; Mueller K; Zange J
    J Appl Physiol (1985); 1998 Dec; 85(6):2140-5. PubMed ID: 9843537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of ATP to ADP beta-phosphoryl conversion in contracting skeletal muscle by in vivo 31P NMR magnetization transfer.
    Le Rumeur E; Le Tallec N; Kernec F; de Certaines JD
    NMR Biomed; 1997 Apr; 10(2):67-72. PubMed ID: 9267863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Muscle heat: a window into the thermodynamics of a molecular machine.
    Loiselle DS; Johnston CM; Han JC; Nielsen PM; Taberner AJ
    Am J Physiol Heart Circ Physiol; 2016 Feb; 310(3):H311-25. PubMed ID: 26589327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis.
    Wilson DF
    J Appl Physiol (1985); 2017 Mar; 122(3):611-619. PubMed ID: 27789771
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of cytosolic ADP and AMP concentrations and the free energy of ATP hydrolysis in human muscle and brain tissues with 31P NMR spectroscopy.
    Roth K; Weiner MW
    Magn Reson Med; 1991 Dec; 22(2):505-11. PubMed ID: 1812384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in potential controllers of human skeletal muscle respiration during incremental calf exercise.
    Barstow TJ; Buchthal SD; Zanconato S; Cooper DM
    J Appl Physiol (1985); 1994 Nov; 77(5):2169-76. PubMed ID: 7868430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of perfused pig intercostal muscles evaluated by 31P-magnetic resonance spectroscopy.
    Pedersen BL; Arendrup H; Secher NH; Quistorff B
    Exp Physiol; 2006 Jul; 91(4):755-63. PubMed ID: 16675500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical relaxation rate and metabolism studied in fatiguing muscle by phosphorus nuclear magnetic resonance.
    Dawson MJ; Gadian DG; Wilkie DR
    J Physiol; 1980 Feb; 299():465-84. PubMed ID: 6966688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new outlook on the energetics of muscle contraction.
    Oplatka A
    Biophys Chem; 2000 Jul; 86(1):49-57. PubMed ID: 11011699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy use by contractile and noncontractile processes in skeletal muscle estimated by 31P-NMR.
    Baker AJ; Brandes R; Schendel TM; Trocha SD; Miller RG; Weiner MW
    Am J Physiol; 1994 Mar; 266(3 Pt 1):C825-31. PubMed ID: 8166246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Chanseaume E; Bielicki G; Tardy AL; Renou JP; Freyssenet D; Boirie Y; Morio B
    Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The basis of differences in thermodynamic efficiency among skeletal muscles.
    Barclay CJ
    Clin Exp Pharmacol Physiol; 2017 Dec; 44(12):1279-1286. PubMed ID: 28892557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo modular control analysis of energy metabolism in contracting skeletal muscle.
    Arsac LM; Beuste C; Miraux S; Deschodt-Arsac V; Thiaudiere E; Franconi JM; Diolez PH
    Biochem J; 2008 Sep; 414(3):391-7. PubMed ID: 18498244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATP economy of force maintenance in human tibialis anterior muscle.
    Nakagawa Y; Ratkevicius A; Mizuno M; Quistorff B
    Med Sci Sports Exerc; 2005 Jun; 37(6):937-43. PubMed ID: 15947717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.