BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 7756588)

  • 1. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus.
    Ohishi K; Carmines PK
    J Am Soc Nephrol; 1995 Feb; 5(8):1559-66. PubMed ID: 7756588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
    Schoonmaker GC; Fallet RW; Carmines PK
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressed impact of nitric oxide on renal arteriolar function in rats with chronic heart failure.
    Ikenaga H; Ishii N; Didion SP; Zhang K; Cornish KG; Patel KP; Mayhan WG; Carmines PK
    Am J Physiol; 1999 Jan; 276(1):F79-87. PubMed ID: 9887083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EDRF-angiotensin II interactions in rat juxtamedullary afferent and efferent arterioles.
    Ohishi K; Carmines PK; Inscho EW; Navar LG
    Am J Physiol; 1992 Nov; 263(5 Pt 2):F900-6. PubMed ID: 1332506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exaggerated impact of ATP-sensitive K(+) channels on afferent arteriolar diameter in diabetes mellitus.
    Ikenaga H; Bast JP; Fallet RW; Carmines PK
    J Am Soc Nephrol; 2000 Jul; 11(7):1199-1207. PubMed ID: 10864575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional impairment of renal afferent arteriolar voltage-gated calcium channels in rats with diabetes mellitus.
    Carmines PK; Ohishi K; Ikenaga H
    J Clin Invest; 1996 Dec; 98(11):2564-71. PubMed ID: 8958219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Renal arteriolar contractile responses to angiotensin II in rats with poorly controlled diabetes mellitus.
    Carmines PK; Ohishi K
    Clin Exp Pharmacol Physiol; 1999 Nov; 26(11):877-82. PubMed ID: 10561808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The SOD mimetic tempol restores vasodilation in afferent arterioles of experimental diabetes.
    Schnackenberg CG; Wilcox CS
    Kidney Int; 2001 May; 59(5):1859-64. PubMed ID: 11318957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Superoxide inhibits neuronal nitric oxide synthase influences on afferent arterioles in spontaneously hypertensive rats.
    Ichihara A; Hayashi M; Hirota N; Saruta T
    Hypertension; 2001 Feb; 37(2 Pt 2):630-4. PubMed ID: 11230347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Inscho EW; Navar LG
    Hypertension; 1998 Jun; 31(6):1255-60. PubMed ID: 9622138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inducible nitric oxide synthase attenuates endothelium-dependent renal microvascular vasodilation.
    Ichihara A; Hayashi M; Navar LG; Saruta T
    J Am Soc Nephrol; 2000 Oct; 11(10):1807-1812. PubMed ID: 11004210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal nitric oxide synthase modulates rat renal microvascular function.
    Ichihara A; Inscho EW; Imig JD; Navar LG
    Am J Physiol; 1998 Mar; 274(3):F516-24. PubMed ID: 9530268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of glomerular arteriolar tone by nitric oxide synthase inhibitors.
    Edwards RM; Trizna W
    J Am Soc Nephrol; 1993 Nov; 4(5):1127-32. PubMed ID: 7508276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lack of nitric oxide mediation of flow-dependent arteriolar dilation in type I diabetes is restored by sepiapterin.
    Bagi Z; Koller A
    J Vasc Res; 2003; 40(1):47-57. PubMed ID: 12644725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basal nitric oxide production curtails arteriolar vasoconstrictor responses to ANG II in rat kidney.
    Ikenaga H; Fallet RW; Carmines PK
    Am J Physiol; 1996 Aug; 271(2 Pt 2):F365-73. PubMed ID: 8770168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
    Ichihara A; Imig JD; Navar LG
    Hypertension; 1999 Jan; 33(1 Pt 2):462-6. PubMed ID: 9931148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nebivolol-induced vasodilation of renal afferent arterioles involves β3-adrenergic receptor and nitric oxide synthase activation.
    Feng MG; Prieto MC; Navar LG
    Am J Physiol Renal Physiol; 2012 Sep; 303(5):F775-82. PubMed ID: 22674024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal arteriolar angiotensin responses during varied adenosine receptor activation.
    Carmines PK; Inscho EW
    Hypertension; 1994 Jan; 23(1 Suppl):I114-9. PubMed ID: 8282342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Juxtamedullary microvascular dysfunction during the hyperfiltration stage of diabetes mellitus.
    Ohishi K; Okwueze MI; Vari RC; Carmines PK
    Am J Physiol; 1994 Jul; 267(1 Pt 2):F99-105. PubMed ID: 8048571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of cyclo-oxygenase blockade on juxtamedullary microvascular responses to angiotensin II in rat kidney.
    Harrison-Bernard LM; Carmines PK
    Clin Exp Pharmacol Physiol; 1995 Oct; 22(10):732-8. PubMed ID: 8575109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.