BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7756588)

  • 21. Nitric oxide modulates vascular tone in preglomerular arterioles.
    Imig JD; Roman RJ
    Hypertension; 1992 Jun; 19(6 Pt 2):770-4. PubMed ID: 1592479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Epoxygenase metabolites contribute to nitric oxide-independent afferent arteriolar vasodilation in response to bradykinin.
    Imig JD; Falck JR; Wei S; Capdevila JH
    J Vasc Res; 2001; 38(3):247-55. PubMed ID: 11399897
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of nitric oxide in desmopressin-induced vasodilation of microperfused rabbit afferent arterioles.
    Kiyomoto K; Tamaki T; Tomohiro A; Nishiyama A; Aki Y; Kimura S; Abe Y
    Hypertens Res; 1997 Mar; 20(1):29-34. PubMed ID: 9101310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide.
    Pflueger AC; Osswald H; Knox FG
    Am J Physiol; 1999 Mar; 276(3):F340-6. PubMed ID: 10070157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interactions of adenosine A1 and A2a receptors on renal microvascular reactivity.
    Nishiyama A; Inscho EW; Navar LG
    Am J Physiol Renal Physiol; 2001 Mar; 280(3):F406-14. PubMed ID: 11181402
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interaction between endogenously produced carbon monoxide and nitric oxide in regulation of renal afferent arterioles.
    Botros FT; Navar LG
    Am J Physiol Heart Circ Physiol; 2006 Dec; 291(6):H2772-8. PubMed ID: 16844915
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nitric oxide synthase inhibition activates L- and T-type Ca2+ channels in afferent and efferent arterioles.
    Feng MG; Navar LG
    Am J Physiol Renal Physiol; 2006 Apr; 290(4):F873-9. PubMed ID: 16263803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of nitric oxide produced by inducible nitric oxide synthase to vascular responses of mesenteric arterioles in streptozotocin-diabetic rats.
    Ishikawa T; Kohno F; Kawase R; Yamamoto Y; Nakayama K
    Br J Pharmacol; 2004 Jan; 141(2):269-76. PubMed ID: 14707030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A role of nitric oxide in vasomotor control of cerebral parenchymal arterioles in rats.
    Takayasu M; Kajita Y; Suzuki Y; Shibuya M; Sugita K; Hidaka H
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S63-6. PubMed ID: 7836689
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of contribution of nitric oxide synthase to cholinergic vasodilation in murine renal afferent arterioles.
    Park S; Bivona BJ; Harrison-Bernard LM
    Am J Physiol Renal Physiol; 2018 Jun; 314(6):F1197-F1204. PubMed ID: 29412691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potassium channel contributions to afferent arteriolar tone in normal and diabetic rat kidney.
    Troncoso Brindeiro CM; Fallet RW; Lane PH; Carmines PK
    Am J Physiol Renal Physiol; 2008 Jul; 295(1):F171-8. PubMed ID: 18495797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of vascular tone in renal microcirculation by erythrocytes: role of EDRF.
    Imig JD; Gebremedhin D; Harder DR; Roman RJ
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H190-5. PubMed ID: 8430846
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct assessment of renal microvascular responses to P2-purinoceptor agonists.
    Inscho EW; Cook AK; Mui V; Miller J
    Am J Physiol; 1998 Apr; 274(4):F718-27. PubMed ID: 9575896
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Restoration of afferent arteriolar autoregulatory behavior in ischemia-reperfusion injury in rat kidneys.
    Feng W; Remedies CE; Obi IE; Aldous SR; Meera SI; Sanders PW; Inscho EW; Guan Z
    Am J Physiol Renal Physiol; 2021 Mar; 320(3):F429-F441. PubMed ID: 33491564
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitric oxide and prostaglandins interact to mediate arteriolar dilation during cortical spreading depression.
    Meng W; Colonna DM; Tobin JR; Busija DW
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H176-81. PubMed ID: 7543255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of NG-nitro-L-arginine on isolated rabbit afferent arterioles.
    Tamaki T; Hasui K; Aki Y; Kimura S; Abe Y
    Jpn J Pharmacol; 1993 Jul; 62(3):231-7. PubMed ID: 8411772
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iodinated contrast media differentially affect afferent and efferent arteriolar tone and reactivity in mice: a possible explanation for reduced glomerular filtration rate.
    Liu ZZ; Viegas VU; Perlewitz A; Lai EY; Persson PB; Patzak A; Sendeski MM
    Radiology; 2012 Dec; 265(3):762-71. PubMed ID: 23023964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Afferent arteriolar responsiveness to altered perfusion pressure in renal hypertension.
    Inscho EW; Carmines PK; Cook AK; Navar LG
    Hypertension; 1990 Jun; 15(6 Pt 2):748-52. PubMed ID: 2351427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of L-arginine on reactivity of hamster cheek pouch arterioles during diabetes mellitus.
    Mayhan WG; Patel KP; Sharpe GM
    Int J Microcirc Clin Exp; 1997; 17(3):107-12. PubMed ID: 9272460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.