BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7756588)

  • 41. Tempol prevents altered K(+) channel regulation of afferent arteriolar tone in diabetic rat kidney.
    Troncoso Brindeiro CM; Lane PH; Carmines PK
    Hypertension; 2012 Mar; 59(3):657-64. PubMed ID: 22252401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diabetes-induced endothelial dysfunction in streptozotocin-treated rats: role of prostaglandin endoperoxides and free radicals.
    Dai FX; Diederich A; Skopec J; Diederich D
    J Am Soc Nephrol; 1993 Dec; 4(6):1327-36. PubMed ID: 8130359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide.
    Koedel U; Bernatowicz A; Paul R; Frei K; Fontana A; Pfister HW
    Ann Neurol; 1995 Mar; 37(3):313-23. PubMed ID: 7535035
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Alterations in nitric oxide activity and sensitivity in early streptozotocin-induced diabetes depend on arteriolar size.
    van Dam B; Demirci C; Reitsma HJ; van Lambalgen AA; van den Bos GC; Tangelder GJ; Stehouwer CD
    Int J Exp Diabetes Res; 2000; 1(3):221-32. PubMed ID: 11467413
    [TBL] [Abstract][Full Text] [Related]  

  • 45. T-type calcium channels in the regulation of afferent and efferent arterioles in rats.
    Feng MG; Li M; Navar LG
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F331-7. PubMed ID: 14583435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. L-arginine analogues blunt prostaglandin-related dilation of arterioles.
    Koller A; Sun D; Messina EJ; Kaley G
    Am J Physiol; 1993 Apr; 264(4 Pt 2):H1194-9. PubMed ID: 8476097
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelin and endothelium-derived relaxing factor control of basal renovascular tone in hydronephrotic rat kidneys.
    Gulbins E; Hoffend J; Zou AP; Dietrich MS; Schlottmann K; Cavarape A; Steinhausen M
    J Physiol; 1993 Sep; 469():571-82. PubMed ID: 8271216
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitric oxide regulates cerebral arteriolar tone in rats.
    Kimura M; Dietrich HH; Dacey RG
    Stroke; 1994 Nov; 25(11):2227-33; discussion 2233-4. PubMed ID: 7974550
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nitric oxide contributes to dilatation of cerebral arterioles during seizures.
    Faraci FM; Breese KR; Heistad DD
    Am J Physiol; 1993 Dec; 265(6 Pt 2):H2209-12. PubMed ID: 8285260
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Influence of endothelium-derived relaxing factor on renal microvessels and pressure-dependent vasodilation.
    Hoffend J; Cavarape A; Endlich K; Steinhausen M
    Am J Physiol; 1993 Aug; 265(2 Pt 2):F285-92. PubMed ID: 8368337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Attenuated afferent arteriolar response to acetylcholine in Goldblatt hypertension.
    Ortenberg JM; Cook AK; Inscho EW; Carmines PK
    Hypertension; 1992 Jun; 19(6 Pt 2):785-9. PubMed ID: 1592481
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Increased expression of endothelial cell nitric oxide synthase (ecNOS) in afferent and glomerular endothelial cells is involved in glomerular hyperfiltration of diabetic nephropathy.
    Sugimoto H; Shikata K; Matsuda M; Kushiro M; Hayashi Y; Hiragushi K; Wada J; Makino H
    Diabetologia; 1998 Dec; 41(12):1426-34. PubMed ID: 9867209
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus.
    Mayhan WG; Simmons LK; Sharpe GM
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H319-26. PubMed ID: 1825454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impaired myogenic responsiveness of the afferent arteriole in streptozotocin-induced diabetic rats: role of eicosanoid derangements.
    Hayashi K; Epstein M; Loutzenhiser R; Forster H
    J Am Soc Nephrol; 1992 May; 2(11):1578-86. PubMed ID: 1610978
    [TBL] [Abstract][Full Text] [Related]  

  • 55. PAR-2 elicits afferent arteriolar vasodilation by NO-dependent and NO-independent actions.
    Trottier G; Hollenberg M; Wang X; Gui Y; Loutzenhiser K; Loutzenhiser R
    Am J Physiol Renal Physiol; 2002 May; 282(5):F891-7. PubMed ID: 11934700
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Advanced glycosylation end-products and NO-dependent vasodilation in renal afferent arterioles from diabetic rats.
    Moore LC; Thorup C; Ellinger A; Paccione J; Casellas D; Kaskel FJ
    Acta Physiol Scand; 2000 Jan; 168(1):101-6. PubMed ID: 10691786
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Impaired nitric oxide-mediated flow-induced dilation in arterioles of spontaneously hypertensive rats.
    Koller A; Huang A
    Circ Res; 1994 Mar; 74(3):416-21. PubMed ID: 8118950
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Elimination of *O(2)(-)/H(2)O(2) by alpha-lipoic acid mediates the recovery of basal EDRF/NO availability and the reversal of superoxide dismutase-induced relaxation in diabetic rat aorta.
    Koçak G; Karasu C
    Diabetes Obes Metab; 2002 Jan; 4(1):69-74. PubMed ID: 11874445
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inactivation of p66Shc Decreases Afferent Arteriolar K
    Miller BS; Blumenthal SR; Shalygin A; Wright KD; Staruschenko A; Imig JD; Sorokin A
    Diabetes; 2018 Nov; 67(11):2206-2212. PubMed ID: 30131395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.