These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 7756662)
21. Phosphoglycolate phosphatase and 2,3-diphosphoglycerate in red cells of normal and anemic subjects. Somoza R; Beutler E Blood; 1983 Oct; 62(4):750-3. PubMed ID: 6309283 [TBL] [Abstract][Full Text] [Related]
22. Postnatal regulation of 2,3-DPG in sheep erythrocytes. Mueggler PA; Carpenter S; Black JA Am J Physiol; 1983 Sep; 245(3):H506-12. PubMed ID: 6311032 [TBL] [Abstract][Full Text] [Related]
23. Inhibition of erythrocyte sickling in vitro by pyridoxal. Kark JA; Kale MP; Tarassoff PG; Woods M; Lessin LS J Clin Invest; 1978 Oct; 62(4):888-91. PubMed ID: 701485 [TBL] [Abstract][Full Text] [Related]
24. Modification of sickle hemoglobin by acetaldehyde and its effect on oxygenation, gelation and sickling. Abraham EC; Stallings M; Abraham A; Garbutt GJ Biochim Biophys Acta; 1982 Jul; 705(1):76-81. PubMed ID: 7115734 [TBL] [Abstract][Full Text] [Related]
25. High pyruvate kinase activity causes low concentration of 2,3-diphosphoglycerate in fetal rabbit red cells. Jelkmann W; Bauer C Pflugers Arch; 1978 Jul; 375(2):189-95. PubMed ID: 29278 [TBL] [Abstract][Full Text] [Related]
26. How do sickle cells become dehydrated? Merciris P; Giraud F Hematol J; 2001; 2(3):200-5. PubMed ID: 11920246 [No Abstract] [Full Text] [Related]
27. Quantitative prediction of erythrocyte sickling for the development of advanced sickle cell therapies. Lu L; Li Z; Li H; Li X; Vekilov PG; Karniadakis GE Sci Adv; 2019 Aug; 5(8):eaax3905. PubMed ID: 31457104 [TBL] [Abstract][Full Text] [Related]
28. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Oksenberg D; Dufu K; Patel MP; Chuang C; Li Z; Xu Q; Silva-Garcia A; Zhou C; Hutchaleelaha A; Patskovska L; Patskovsky Y; Almo SC; Sinha U; Metcalf BW; Archer DR Br J Haematol; 2016 Oct; 175(1):141-53. PubMed ID: 27378309 [TBL] [Abstract][Full Text] [Related]
29. A procedure for decreasing the level of 2,3-bisphosphoglycerate in red cells in vitro. Rose ZB Biochem Biophys Res Commun; 1976 Dec; 73(4):1011-7. PubMed ID: 15625875 [TBL] [Abstract][Full Text] [Related]
30. Sickling-suppressive effects of chrysin may be associated with sequestration of deoxy-haemoglobin, 2,3-bisphosphoglycerate mutase, alteration of redox homeostasis and functional chemistry of sickle erythrocytes. Muhammad A; Waziri AD; Forcados GE; Sanusi B; Sani H; Malami I; Abubakar IB; Muhammad A; Muhammad RA; Mohammed HA Hum Exp Toxicol; 2020 Apr; 39(4):537-546. PubMed ID: 31876182 [TBL] [Abstract][Full Text] [Related]
31. Effect of piracetam on sickle erythrocytes and sickle hemoglobin. Asakura T; Ohnishi ST; Adachi K; Ozguc M; Hashimoto K; Devlin MT; Schwartz E Biochim Biophys Acta; 1981 May; 668(3):397-405. PubMed ID: 7236716 [TBL] [Abstract][Full Text] [Related]
32. Determination of deoxyhemoglobin S polymer in sickle erythrocytes upon deoxygenation. Noguchi CT; Torchia DA; Schechter AN Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5487-91. PubMed ID: 6933568 [TBL] [Abstract][Full Text] [Related]
33. Effects of cetiedil on monovalent cation permeability in the erythrocyte: an explanation for the efficacy of cetiedil in the treatment of sickle cell anemia. Berkowitz LR; Orringer EP Blood Cells; 1982; 8(2):283-8. PubMed ID: 7159752 [TBL] [Abstract][Full Text] [Related]
34. Rapid and reproducible characterization of sickling during automated deoxygenation in sickle cell disease patients. Rab MAE; van Oirschot BA; Bos J; Merkx TH; van Wesel ACW; Abdulmalik O; Safo MK; Versluijs BA; Houwing ME; Cnossen MH; Riedl J; Schutgens REG; Pasterkamp G; Bartels M; van Beers EJ; van Wijk R Am J Hematol; 2019 May; 94(5):575-584. PubMed ID: 30784099 [TBL] [Abstract][Full Text] [Related]
35. Studies on a large kindred with hemolytic anemia and low erythrocyte 2,3-DPG. Harkness DR; Roth S; Goldman P; Kim C; Isaacks RE Prog Clin Biol Res; 1978; 21():251-74. PubMed ID: 208085 [No Abstract] [Full Text] [Related]
36. Hemoglobin S polymerization: primary determinant of the hemolytic and clinical severity of the sickling syndromes. Brittenham GM; Schechter AN; Noguchi CT Blood; 1985 Jan; 65(1):183-9. PubMed ID: 3965046 [TBL] [Abstract][Full Text] [Related]
37. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate. Versmold HT; Linderkamp C; Döhlemann C; Riegel KP Pediatr Res; 1976 Jun; 10(6):566-70. PubMed ID: 5699 [TBL] [Abstract][Full Text] [Related]
38. Inhibition of the gelation of extracellular and intracellular hemoglobin S by selective acetylation with methyl acetyl phosphate. Ueno H; Benjamin LJ; Pospischil MA; Manning JM Biochemistry; 1987 Jun; 26(11):3125-9. PubMed ID: 3607016 [TBL] [Abstract][Full Text] [Related]
39. Activation of human erythrocyte 2,3-bisphosphoglycerate phosphatase at physiological concentrations of substrate. Reynolds CH Arch Biochem Biophys; 1986 Oct; 250(1):106-11. PubMed ID: 3021059 [TBL] [Abstract][Full Text] [Related]
40. The molecular basis of antisickling agents. Franklin IM; Huehns ER Trans R Soc Trop Med Hyg; 1980; 74(6):695-700. PubMed ID: 7210123 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]