These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 7757015)
1. Divergent evolution of a beta/alpha-barrel subclass: detection of numerous phosphate-binding sites by motif search. Bork P; Gellerich J; Groth H; Hooft R; Martin F Protein Sci; 1995 Feb; 4(2):268-74. PubMed ID: 7757015 [TBL] [Abstract][Full Text] [Related]
2. Similarity of different beta-strands flanked in loops by glycines and prolines from distinct (alpha/beta)8-barrel enzymes: chance or a homology? Janecek S Protein Sci; 1995 Jun; 4(6):1239-42. PubMed ID: 7549888 [TBL] [Abstract][Full Text] [Related]
3. Structural conservation in parallel beta/alpha-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Wilmanns M; Hyde CC; Davies DR; Kirschner K; Jansonius JN Biochemistry; 1991 Sep; 30(38):9161-9. PubMed ID: 1892826 [TBL] [Abstract][Full Text] [Related]
4. On the evolution of alternate core packing in eightfold beta/alpha-barrels. Raine AR; Scrutton NS; Mathews FS Protein Sci; 1994 Oct; 3(10):1889-92. PubMed ID: 7849604 [TBL] [Abstract][Full Text] [Related]
5. Recurrent alpha beta loop structures in TIM barrel motifs show a distinct pattern of conserved structural features. Scheerlinck JP; Lasters I; Claessens M; De Maeyer M; Pio F; Delhaise P; Wodak SJ Proteins; 1992 Apr; 12(4):299-313. PubMed ID: 1374562 [TBL] [Abstract][Full Text] [Related]
6. D-Ribulose 5-phosphate 3-epimerase: functional and structural relationships to members of the ribulose-phosphate binding (beta/alpha)8-barrel superfamily. Akana J; Fedorov AA; Fedorov E; Novak WR; Babbitt PC; Almo SC; Gerlt JA Biochemistry; 2006 Feb; 45(8):2493-503. PubMed ID: 16489742 [TBL] [Abstract][Full Text] [Related]
7. A P-loop-like motif in a widespread ATP pyrophosphatase domain: implications for the evolution of sequence motifs and enzyme activity. Bork P; Koonin EV Proteins; 1994 Dec; 20(4):347-55. PubMed ID: 7731953 [TBL] [Abstract][Full Text] [Related]
8. Alignment of beta-barrels in (beta/alpha)8 proteins using hydrogen-bonding pattern. Sergeev Y; Lee B J Mol Biol; 1994 Nov; 244(2):168-82. PubMed ID: 7966329 [TBL] [Abstract][Full Text] [Related]
9. Prediction of secondary structure by evolutionary comparison: application to the alpha subunit of tryptophan synthase. Crawford IP; Niermann T; Kirschner K Proteins; 1987; 2(2):118-29. PubMed ID: 3328860 [TBL] [Abstract][Full Text] [Related]
10. Folding of beta/alpha-unit scrambled forms of S. cerevisiae triosephosphate isomerase: Evidence for autonomy of substructure formation and plasticity of hydrophobic and hydrogen bonding interactions in core of (beta/alpha)8-barrel. Shukla A; Guptasarma P Proteins; 2004 May; 55(3):548-57. PubMed ID: 15103619 [TBL] [Abstract][Full Text] [Related]
11. Affinities of phosphorylated substrates for the E. coli tryptophan synthase alpha-subunit: roles of Ser-235 and helix-8' dipole. Sarker KD; Hardman JK Proteins; 1995 Feb; 21(2):130-9. PubMed ID: 7777488 [TBL] [Abstract][Full Text] [Related]
13. Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology? Janecek S Protein Sci; 1996 Jun; 5(6):1136-43. PubMed ID: 8762144 [TBL] [Abstract][Full Text] [Related]
14. A helix-turn-strand structural motif common in alpha-beta proteins. Rice PA; Goldman A; Steitz TA Proteins; 1990; 8(4):334-40. PubMed ID: 1708883 [TBL] [Abstract][Full Text] [Related]
15. Mimicking enzyme evolution by generating new (betaalpha)8-barrels from (betaalpha)4-half-barrels. Höcker B; Claren J; Sterner R Proc Natl Acad Sci U S A; 2004 Nov; 101(47):16448-53. PubMed ID: 15539462 [TBL] [Abstract][Full Text] [Related]
16. alpha/beta barrel evolution and the modular assembly of enzymes: emerging trends in the flavin oxidase/dehydrogenase family. Scrutton NS Bioessays; 1994 Feb; 16(2):115-22. PubMed ID: 8147842 [TBL] [Abstract][Full Text] [Related]
17. Spinach glycolate oxidase and yeast flavocytochrome b2 are structurally homologous and evolutionarily related enzymes with distinctly different function and flavin mononucleotide binding. Lindqvist Y; Brändén CI; Mathews FS; Lederer F J Biol Chem; 1991 Feb; 266(5):3198-207. PubMed ID: 1993693 [TBL] [Abstract][Full Text] [Related]
18. Three-dimensional model of the alpha-subunit of bacterial luciferase. Sandalova T; Lindqvist Y Proteins; 1995 Oct; 23(2):241-55. PubMed ID: 8592705 [TBL] [Abstract][Full Text] [Related]
19. Classification of doubly wound nucleotide binding topologies using automated loop searches. Swindells MB Protein Sci; 1993 Dec; 2(12):2146-53. PubMed ID: 8298462 [TBL] [Abstract][Full Text] [Related]
20. Evolutionary potential of (beta/alpha)8-barrels: functional promiscuity produced by single substitutions in the enolase superfamily. Schmidt DM; Mundorff EC; Dojka M; Bermudez E; Ness JE; Govindarajan S; Babbitt PC; Minshull J; Gerlt JA Biochemistry; 2003 Jul; 42(28):8387-93. PubMed ID: 12859183 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]