These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7757230)

  • 1. Bioseparations with permeable particles.
    Rodrigues AE; Loureiro JM; Chenou C; de la Vega MR
    J Chromatogr B Biomed Appl; 1995 Feb; 664(1):233-40. PubMed ID: 7757230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeable packings and perfusion chromatography in protein separation.
    Rodrigues AE
    J Chromatogr B Biomed Sci Appl; 1997 Oct; 699(1-2):47-61. PubMed ID: 9392367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of diffusion and diffusion-convection matrices for use in ion-exchange separations of proteins.
    Nash DC; Chase HA
    J Chromatogr A; 1998 May; 807(2):185-207. PubMed ID: 9646495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanded and packed bed albumin adsorption on fluoride modified zirconia.
    Mullick A; Griffith CM; Flickinger MC
    Biotechnol Bioeng; 1998 Nov; 60(3):333-40. PubMed ID: 10099436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How changing the particle structure can speed up protein mass transfer kinetics in liquid chromatography.
    Gritti F; Horvath K; Guiochon G
    J Chromatogr A; 2012 Nov; 1263():84-98. PubMed ID: 23040978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved protein recovery in reversed-phase liquid chromatography by the use of ultrahigh pressures.
    Eschelbach JW; Jorgenson JW
    Anal Chem; 2006 Mar; 78(5):1697-706. PubMed ID: 16503625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of small size fully porous particles and superficially porous particles of chiral anion-exchange type stationary phases in ultra-high performance liquid chromatography: effect of particle and pore size on chromatographic efficiency and kinetic performance.
    Schmitt K; Woiwode U; Kohout M; Zhang T; Lindner W; Lämmerhofer M
    J Chromatogr A; 2018 Sep; 1569():149-159. PubMed ID: 30041874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gradient elution separation and peak capacity of columns packed with porous shell particles.
    Marchetti N; Cavazzini A; Gritti F; Guiochon G
    J Chromatogr A; 2007 Sep; 1163(1-2):203-11. PubMed ID: 17632112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of perfusion media and monoliths for protein and virus-like particle chromatography.
    Wu Y; Abraham D; Carta G
    J Chromatogr A; 2016 May; 1447():72-81. PubMed ID: 27106397
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model discrimination and estimation of the intraparticle mass transfer parameters for the adsorption of bovine serum albumin onto porous adsorbent particles by the use of experimental frontal analysis data.
    Heeter GA; Liapis AI
    J Chromatogr A; 1997 Jul; 776(1):3-13. PubMed ID: 9286073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packed in a chromatographic column.
    Meyers JJ; Liapis AI
    J Chromatogr A; 1999 Aug; 852(1):3-23. PubMed ID: 10480225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comprehensive off-line, two-dimensional liquid chromatography. Application to the separation of peptide digests.
    Marchetti N; Fairchild JN; Guiochon G
    Anal Chem; 2008 Apr; 80(8):2756-67. PubMed ID: 18355083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of new high-density ion exchange adsorbents for expanded bed adsorption chromatography.
    Xia HF; Lin DQ; Yao SJ
    J Chromatogr A; 2007 Mar; 1145(1-2):58-66. PubMed ID: 17316664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of intraparticle convection on the chromatography of biomacromolecules.
    Frey DD; Schweinheim E; Horváth C
    Biotechnol Prog; 1993; 9(3):273-84. PubMed ID: 7763696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore network modelling: determination of the dynamic profiles of the pore diffusivity and its effect on column performance as the loading of the solute in the adsorbed phase varies with time.
    Meyers JJ; Crosser OK; Liapis AI
    J Chromatogr A; 2001 Jan; 908(1-2):35-47. PubMed ID: 11218133
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intraparticle mass transfer in high-speed chromatography of proteins.
    Farnan D; Frey DD; Horváth C
    Biotechnol Prog; 1997; 13(4):429-39. PubMed ID: 9265778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between the efficiencies of columns packed with fully and partially porous C18-bonded silica materials.
    Gritti F; Cavazzini A; Marchetti N; Guiochon G
    J Chromatogr A; 2007 Jul; 1157(1-2):289-303. PubMed ID: 17543317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein and virus-like particle adsorption on perfusion chromatography media.
    Wu Y; Simons J; Hooson S; Abraham D; Carta G
    J Chromatogr A; 2013 Jul; 1297():96-105. PubMed ID: 23726244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel general expressions that describe the behavior of the height equivalent of a theoretical plate in chromatographic systems involving electrically-driven and pressure-driven flows.
    Grimes BA; Lüdtke S; Unger KK; Liapis AI
    J Chromatogr A; 2002 Dec; 979(1-2):447-66. PubMed ID: 12498277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic interaction chromatography of proteins. IV. Protein adsorption capacity and transport in preparative mode.
    To BC; Lenhoff AM
    J Chromatogr A; 2011 Jan; 1218(3):427-40. PubMed ID: 21176838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.