BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 7757408)

  • 1. In vitro development of vertebrate central synapses.
    Grantyn R; Kraszewski K; Melnick I; Taschenberger H; Warton SS
    Perspect Dev Neurobiol; 1995; 2(4):387-97. PubMed ID: 7757408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of GABAergic connections in vitro: increasing efficacy of synaptic transmission is not accompanied by changes in miniature currents.
    Kraszewski K; Grantyn R
    J Neurobiol; 1992 Aug; 23(6):766-81. PubMed ID: 1331318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantal analysis of presynaptic inhibition, low [Ca2+]0, and high pressure interactions at crustacean excitatory synapses.
    Golan H; Moore HJ; Grossman Y
    Synapse; 1994 Dec; 18(4):328-36. PubMed ID: 7886625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dorsal root and dorsal column mediated synaptic inputs to reticulospinal neurons in lampreys: involvement of glutamatergic, glycinergic, and GABAergic transmission.
    Dubuc R; Bongianni F; Ohta Y; Grillner S
    J Comp Neurol; 1993 Jan; 327(2):251-9. PubMed ID: 8381143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The evolution of the synapses in the vertebrate central nervous system (a topical paper)].
    Motorina MV
    Zh Evol Biokhim Fiziol; 1995; 31(1):3-13. PubMed ID: 7571908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [An analysis of transmission in the interneuronal synapses using a convolution of binomial distributions].
    Bart AG; Ditiatev AE; Kozhanov VM
    Neirofiziologiia; 1988; 20(4):487-94. PubMed ID: 2849063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Monoaminergic inhibitory synapses in the central pathways for the regulation of movements].
    Arushanian EB
    Usp Fiziol Nauk; 1975; 6(4):100-23. PubMed ID: 174334
    [No Abstract]   [Full Text] [Related]  

  • 9. The formation of glutamatergic synapses in cultured central neurons: selective increase in miniature synaptic currents.
    Gottmann K; Pfrieger FW; Lux HD
    Brain Res Dev Brain Res; 1994 Aug; 81(1):77-88. PubMed ID: 7805289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Morphofunctional mechanisms of regulating impulse conduction and the formation of functional systems of neurons in the CNS].
    Leontovich TA
    Usp Fiziol Nauk; 1980; 11(3):64-84. PubMed ID: 6251653
    [No Abstract]   [Full Text] [Related]  

  • 11. [A change in the ultrastructure of frog spinal cord and motor neuron synapses during prolonged activation].
    Zamoskovskiĭ EM; Darinskiĭ IuA
    Arkh Anat Gistol Embriol; 1975 Feb; 68(2):22-8. PubMed ID: 165799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of synaptic frequency: comparison of the effects of hypoinnervation with those of hyperinnervation in the fly's compound eye.
    Fröhlich A; Meinertzhagen IA
    J Neurobiol; 1987 Jul; 18(4):343-57. PubMed ID: 3612115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Structural-functional properties of dendrites of central neurons].
    Smirnov GD; Manteĭfel' IuB
    Usp Fiziol Nauk; 1973; 4(3):3-23. PubMed ID: 4375891
    [No Abstract]   [Full Text] [Related]  

  • 14. Glutamatergic central nervous transmission in locusts.
    Sombati S; Hoyle G
    J Neurobiol; 1984 Nov; 15(6):507-16. PubMed ID: 6097646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Structural organization of the synaptic connections of developing neurons in the anterior horns of the spinal cord in early human fetuses].
    Milokhin AA; Chernova IV
    Biull Eksp Biol Med; 1980 Oct; 90(10):494-7. PubMed ID: 7426718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [The pathways of the stabilization of the amplitude of postsynaptic potentials in the interneuronal synapses of vertebrates].
    Ditiatev AE; Batueva IV; Kozhanov VM
    Zh Evol Biokhim Fiziol; 1992; 28(2):232-9. PubMed ID: 1333694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in inhibitory synapses.
    Szentágothai J
    Adv Cytopharmacol; 1971 May; 1():401-17. PubMed ID: 4148191
    [No Abstract]   [Full Text] [Related]  

  • 18. [Quantal analysis of the postsynaptic potentials in interneuronal synapses: the recovery of the signal from the noise].
    Bart AG; Ditiatev AE; Kozhanov VM
    Neirofiziologiia; 1988; 20(4):479-87. PubMed ID: 2849062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of 'quantal' peaks in distributions of evoked synaptic transmission at central synapses.
    Walmsley B
    Proc Biol Sci; 1995 Aug; 261(1361):245-50. PubMed ID: 7568277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in transmitter sensitivity and synaptic transmission in embryonic chicken sympathetic neurons innervated in vitro.
    Gardette R; Listerud MD; Brussaard AB; Role LW
    Dev Biol; 1991 Sep; 147(1):83-95. PubMed ID: 1652527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.