These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
78 related articles for article (PubMed ID: 7757799)
21. Purification and biochemical characterization of polyphenol oxidases from embryogenic and nonembryogenic cotton (Gossypium hirsutum L.) cells. Kouakou TH; Kouadio YJ; Kouamé P; Waffo-Téguo P; Décendit A; Mérillon JM Appl Biochem Biotechnol; 2009 Aug; 158(2):285-301. PubMed ID: 18795241 [TBL] [Abstract][Full Text] [Related]
22. Browning prevention by ascorbic acid and 4-hexylresorcinol: different mechanisms of action on polyphenol oxidase in the presence and in the absence of substrates. Arias E; González J; Peiró JM; Oria R; Lopez-Buesa P J Food Sci; 2007 Nov; 72(9):C464-70. PubMed ID: 18034705 [TBL] [Abstract][Full Text] [Related]
23. The influence of catechol structure on the suicide-inactivation of tyrosinase. Ramsden CA; Stratford MR; Riley PA Org Biomol Chem; 2009 Sep; 7(17):3388-90. PubMed ID: 19675891 [TBL] [Abstract][Full Text] [Related]
24. Kinetic study of the suicide inactivation of latent polyphenoloxidase from iceberg lettuce (Lactuca sativa) induced by 4-tert-butylcatechol in the presence of SDS. Chazarra S; Cabanes J; Escribano J; García-Carmona F Biochim Biophys Acta; 1997 May; 1339(2):297-303. PubMed ID: 9187250 [TBL] [Abstract][Full Text] [Related]
25. The pH-dependence of the Escherichia coli RNase HII-catalysed reaction suggests that an active site carboxylate group participates directly in catalysis. Bastock JA; Webb M; Grasby JA J Mol Biol; 2007 Apr; 368(2):421-33. PubMed ID: 17355881 [TBL] [Abstract][Full Text] [Related]
26. Catalytic mechanism of scytalone dehydratase: site-directed mutagenisis, kinetic isotope effects, and alternate substrates. Basarab GS; Steffens JJ; Wawrzak Z; Schwartz RS; Lundqvist T; Jordan DB Biochemistry; 1999 May; 38(19):6012-24. PubMed ID: 10320327 [TBL] [Abstract][Full Text] [Related]
27. Evidence for a catalytic dyad in the active site of homocitrate synthase from Saccharomyces cerevisiae. Qian J; Khandogin J; West AH; Cook PF Biochemistry; 2008 Jul; 47(26):6851-8. PubMed ID: 18533686 [TBL] [Abstract][Full Text] [Related]
28. Synthetic models of the active site of catechol oxidase: mechanistic studies. Koval IA; Gamez P; Belle C; Selmeczi K; Reedijk J Chem Soc Rev; 2006 Sep; 35(9):814-40. PubMed ID: 16936929 [TBL] [Abstract][Full Text] [Related]
29. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity. Salvato B; Santamaria M; Beltramini M; Alzuet G; Casella L Biochemistry; 1998 Oct; 37(40):14065-77. PubMed ID: 9760242 [TBL] [Abstract][Full Text] [Related]
30. Kinetics of the slow pH-mediated transition of polyphenol oxidase. Jiménez M; García-Carmona F Arch Biochem Biophys; 1996 Jul; 331(1):15-22. PubMed ID: 8660678 [TBL] [Abstract][Full Text] [Related]
31. Effect of detergents, trypsin and unsaturated fatty acids on latent loquat fruit polyphenol oxidase: basis for the enzyme's activity regulation. Sellés-Marchart S; Casado-Vela J; Bru-Martínez R Arch Biochem Biophys; 2007 Aug; 464(2):295-305. PubMed ID: 17537396 [TBL] [Abstract][Full Text] [Related]
32. The purification of polyphenol oxidase from tobacco. Shi C; Dai Y; Xu X; Xie Y; Liu Q Protein Expr Purif; 2002 Feb; 24(1):51-5. PubMed ID: 11812222 [TBL] [Abstract][Full Text] [Related]
33. [Suitability of the O-diphenol oxidase test using catechol for the differentiation of Cryptococcus neoformans]. Breyer D; Staib F; Senska M; Blisse A Zentralbl Bakteriol Orig A; 1972 Dec; 222(4):540-3. PubMed ID: 4145173 [No Abstract] [Full Text] [Related]
34. Oxidation of 4-tert-butylcatechol and dopamine by hydrogen peroxide catalysed by horseradish peroxidase. García-Moreno M; Moreno-Conesa M; Rodríguez-López JN; García-Cánovas F; Varón R Biol Chem; 1999 Jun; 380(6):689-94. PubMed ID: 10430033 [TBL] [Abstract][Full Text] [Related]
35. Evidence for a common regulation in the activation of a polyphenol oxidase by trypsin and sodium dodecyl sulfate. Gandía-Herrero F; Jiménez-Atiénzar M; Cabanes J; García-Carmona F; Escribano J Biol Chem; 2005 Jun; 386(6):601-7. PubMed ID: 16006247 [TBL] [Abstract][Full Text] [Related]
36. A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. Katz BA; Elrod K; Luong C; Rice MJ; Mackman RL; Sprengeler PA; Spencer J; Hataye J; Janc J; Link J; Litvak J; Rai R; Rice K; Sideris S; Verner E; Young W J Mol Biol; 2001 Apr; 307(5):1451-86. PubMed ID: 11292354 [TBL] [Abstract][Full Text] [Related]
37. Characterization of polyphenol oxidase changes induced by desiccation of Ramonda serbica leaves. Veljovic-Jovanovic S; Kukavica B; Navari-Izzo F Physiol Plant; 2008 Apr; 132(4):407-16. PubMed ID: 18248509 [TBL] [Abstract][Full Text] [Related]
38. Purification and characterization of a latent polyphenol oxidase from beet root (Beta vulgaris L.). Gandía-Herrero F; García-Carmona F; Escribano J J Agric Food Chem; 2004 Feb; 52(3):609-15. PubMed ID: 14759157 [TBL] [Abstract][Full Text] [Related]
39. Subunit III of cytochrome c oxidase of Rhodobacter sphaeroides is required to maintain rapid proton uptake through the D pathway at physiologic pH. Gilderson G; Salomonsson L; Aagaard A; Gray J; Brzezinski P; Hosler J Biochemistry; 2003 Jun; 42(24):7400-9. PubMed ID: 12809495 [TBL] [Abstract][Full Text] [Related]
40. On the catalytic role of the conserved active site residue His466 of choline oxidase. Ghanem M; Gadda G Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]