These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 7757803)
1. [G1 cyclin degradation and cell differentiation in Saccharomyces cerevisiae]. Barral Y; Mann C C R Acad Sci III; 1995 Jan; 318(1):43-50. PubMed ID: 7757803 [TBL] [Abstract][Full Text] [Related]
2. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast. Moffat J; Andrews B Nat Cell Biol; 2004 Jan; 6(1):59-66. PubMed ID: 14688790 [TBL] [Abstract][Full Text] [Related]
3. The F-box protein Grr1 regulates the stability of Ccn1, Cln3 and Hof1 and cell morphogenesis in Candida albicans. Li WJ; Wang YM; Zheng XD; Shi QM; Zhang TT; Bai C; Li D; Sang JL; Wang Y Mol Microbiol; 2006 Oct; 62(1):212-26. PubMed ID: 16987179 [TBL] [Abstract][Full Text] [Related]
4. Deregulation of CLN1 and CLN2 in the Saccharomyces cerevisiae whi2 mutant. Radcliffe P; Trevethick J; Tyers M; Sudbery P Yeast; 1997 Jun; 13(8):707-15. PubMed ID: 9219335 [TBL] [Abstract][Full Text] [Related]
5. Inhibition of G1 cyclin activity by the Ras/cAMP pathway in yeast. Tokiwa G; Tyers M; Volpe T; Futcher B Nature; 1994 Sep; 371(6495):342-5. PubMed ID: 8090204 [TBL] [Abstract][Full Text] [Related]
6. Identification of novel and conserved functional and structural elements of the G1 cyclin Cln3 important for interactions with the CDK Cdc28 in Saccharomyces cerevisiae. Miller ME; Cross FR; Groeger AL; Jameson KL Yeast; 2005 Oct; 22(13):1021-36. PubMed ID: 16200502 [TBL] [Abstract][Full Text] [Related]
7. Uncovering genetic relationships using small molecules that selectively target yeast cell cycle mutants. Nehil MT; Tamble CM; Combs DJ; Kellogg DR; Lokey RS Chem Biol Drug Des; 2007 Apr; 69(4):258-64. PubMed ID: 17461973 [TBL] [Abstract][Full Text] [Related]
8. Huxley's revenge: cell-cycle entry, positive feedback, and the G1 cyclins. Carey LB; Leatherwood JK; Futcher B Mol Cell; 2008 Aug; 31(3):307-8. PubMed ID: 18691962 [TBL] [Abstract][Full Text] [Related]
9. Saccharomyces cerevisiae G1 cyclins are differentially involved in invasive and pseudohyphal growth independent of the filamentation mitogen-activated protein kinase pathway. Loeb JD; Kerentseva TA; Pan T; Sepulveda-Becerra M; Liu H Genetics; 1999 Dec; 153(4):1535-46. PubMed ID: 10581264 [TBL] [Abstract][Full Text] [Related]
10. Repression of growth-regulated G1 cyclin expression by cyclic AMP in budding yeast. Baroni MD; Monti P; Alberghina L Nature; 1994 Sep; 371(6495):339-42. PubMed ID: 8090203 [TBL] [Abstract][Full Text] [Related]
11. CLN3 expression is sufficient to restore G1-to-S-phase progression in Saccharomyces cerevisiae mutants defective in translation initiation factor eIF4E. Danaie P; Altmann M; Hall MN; Trachsel H; Helliwell SB Biochem J; 1999 May; 340 ( Pt 1)(Pt 1):135-41. PubMed ID: 10229668 [TBL] [Abstract][Full Text] [Related]
12. Transcription factors important for starting the cell cycle in yeast. Moll T; Schwob E; Koch C; Moore A; Auer H; Nasmyth K Philos Trans R Soc Lond B Biol Sci; 1993 Jun; 340(1293):351-60. PubMed ID: 8103939 [TBL] [Abstract][Full Text] [Related]
13. Rme1, which controls CLN2 expression in Saccharomyces cerevisiae, is a nuclear protein that is cell cycle regulated. Frenz LM; Johnson AL; Johnston LH Mol Genet Genomics; 2001 Nov; 266(3):374-84. PubMed ID: 11713667 [TBL] [Abstract][Full Text] [Related]
14. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Zheng X; Wang Y; Wang Y EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502 [TBL] [Abstract][Full Text] [Related]
15. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Barral Y; Jentsch S; Mann C Genes Dev; 1995 Feb; 9(4):399-409. PubMed ID: 7883165 [TBL] [Abstract][Full Text] [Related]
16. Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Bachewich C; Whiteway M Eukaryot Cell; 2005 Jan; 4(1):95-102. PubMed ID: 15643065 [TBL] [Abstract][Full Text] [Related]
17. Control of division arrest and entry into meiosis by extracellular alkalisation in Saccharomyces cerevisiae. Hayashi M; Ohkuni K; Yamashita I Yeast; 1998 Jul; 14(10):905-13. PubMed ID: 9717236 [TBL] [Abstract][Full Text] [Related]
18. Rapamycin-mediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae. Zinzalla V; Graziola M; Mastriani A; Vanoni M; Alberghina L Mol Microbiol; 2007 Mar; 63(5):1482-94. PubMed ID: 17302822 [TBL] [Abstract][Full Text] [Related]
19. Delayed accumulation of the yeast G1 cyclins Cln1 and Cln2 and the F-box protein Grr1 in response to glucose. Fey JP; Lanker S Yeast; 2007 May; 24(5):419-29. PubMed ID: 17366522 [TBL] [Abstract][Full Text] [Related]
20. Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. Lorenz MC; Heitman J EMBO J; 1997 Dec; 16(23):7008-18. PubMed ID: 9384580 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]