BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7758456)

  • 21. Refinement of 3D models of horseradish peroxidase isoenzyme C: predictions of 2D NMR assignments and substrate binding sites.
    Zhao D; Gilfoyle DJ; Smith AT; Loew GH
    Proteins; 1996 Oct; 26(2):204-16. PubMed ID: 8916228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen bond network in the distal site of peroxidases: spectroscopic properties of Asn70 --> Asp horseradish peroxidase mutant.
    Tanaka M; Nagano S; Ishimori K; Morishima I
    Biochemistry; 1997 Aug; 36(32):9791-8. PubMed ID: 9245411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of a haem active-site mutant of horseradish peroxidase, Phe41----Val, with altered reactivity towards hydrogen peroxide and reducing substrates.
    Smith AT; Sanders SA; Thorneley RN; Burke JF; Bray RR
    Eur J Biochem; 1992 Jul; 207(2):507-19. PubMed ID: 1633806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect on structural and solvent water molecules of substrate binding to ferric horseradish peroxidase.
    Simpson N; Adamczyk K; Hithell G; Shaw DJ; Greetham GM; Towrie M; Parker AW; Hunt NT
    Faraday Discuss; 2015; 177():163-79. PubMed ID: 25605054
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nuclear magnetic resonance studies on the spatial relationship of aromatic donor molecules to the heme iron of horseradish peroxidase.
    Sakurada J; Takahashi S; Hosoya T
    J Biol Chem; 1986 Jul; 261(21):9657-62. PubMed ID: 3733690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR studies of recombinant Coprinus peroxidase and three site-directed mutants. Implications for peroxidase substrate binding.
    Veitch NC; Tams JW; Vind J; Dalbøge H; Welinder KG
    Eur J Biochem; 1994 Jun; 222(3):909-18. PubMed ID: 8026500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding of salicylhydroxamic acid and several aromatic donor molecules to Arthromyces ramosus peroxidase, investigated by X-ray crystallography, optical difference spectroscopy, NMR relaxation, molecular dynamics, and kinetics.
    Tsukamoto K; Itakura H; Sato K; Fukuyama K; Miura S; Takahashi S; Ikezawa H; Hosoya T
    Biochemistry; 1999 Sep; 38(39):12558-68. PubMed ID: 10504224
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvent dependent and independent motions of CO-horseradish peroxidase examined by infrared spectroscopy and molecular dynamics calculations.
    Kaposi AD; Prabhu NV; Dalosto SD; Sharp KA; Wright WW; Stavrov SS; Vanderkooi JM
    Biophys Chem; 2003 Oct; 106(1):1-14. PubMed ID: 14516907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A spin label study of horseradish peroxidase.
    Rakhit G; Chignell CF
    Biochim Biophys Acta; 1979 Sep; 580(1):108-19. PubMed ID: 44680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation of distal residues of horseradish peroxidase: influence on substrate binding and cavity properties.
    Howes BD; Rodriguez-Lopez JN; Smith AT; Smulevich G
    Biochemistry; 1997 Feb; 36(6):1532-43. PubMed ID: 9063902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequential assignment of proton resonances in the NMR spectrum of Zn-substituted alpha chains from human hemoglobin. Ligand-induced tertiary changes in the heme pocket.
    Martineau L; Craescu CT
    Eur J Biochem; 1993 Jun; 214(2):383-93. PubMed ID: 8513788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of the binding and reactivity of plant and mammalian peroxidases to indole derivatives by computational docking.
    Hallingbäck HR; Gabdoulline RR; Wade RC
    Biochemistry; 2006 Mar; 45(9):2940-50. PubMed ID: 16503648
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nuclear magnetic resonance studies of high-spin ferric hemoproteins.
    Morishmima I; Ogawa S; Inubushi T; Iizuka T
    Adv Biophys; 1978; 11():217-45. PubMed ID: 27954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding of horseradish, lignin, and manganese peroxidases to their respective substrates.
    Banci L; Bertini I; Bini T; Tien M; Turano P
    Biochemistry; 1993 Jun; 32(22):5825-31. PubMed ID: 8504102
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton nuclear magnetic resonance spectroscopy of horseradish peroxidase isoenzymes: correlation of distinctive spectra with isoenzyme specific activities.
    Gonzalez-Vergara E; Meyer M; Goff HM
    Biochemistry; 1985 Nov; 24(23):6561-7. PubMed ID: 4084538
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of hydrophobic hydroxamic acids enhances peroxidase's stereoselectivity in nonaqueous sulfoxidations.
    Das PK; Caaveiro JM; Luque S; Klibanov AM
    J Am Chem Soc; 2002 Feb; 124(5):782-7. PubMed ID: 11817954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proton magnetic resonance studies of peroxidases from turnip and horseradish.
    Williams RJ; Wright PE; Mazza G; Ricard JR
    Biochim Biophys Acta; 1975 Nov; 412(1):127-47. PubMed ID: 172144
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamics of nitric oxide rebinding and escape in horseradish peroxidase.
    Ye X; Yu A; Champion PM
    J Am Chem Soc; 2006 Feb; 128(5):1444-5. PubMed ID: 16448103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proton nuclear Overhauser effect study of the heme active site structure of chloroperoxidase.
    Dugad LB; Wang X; Wang CC; Lukat GS; Goff HM
    Biochemistry; 1992 Feb; 31(6):1651-5. PubMed ID: 1737022
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of static and dynamic disorder on the visible and infrared absorption spectra of carbonmonoxy horseradish peroxidase.
    Kaposi AD; Vanderkooi JM; Wright WW; Fidy J; Stavrov SS
    Biophys J; 2001 Dec; 81(6):3472-82. PubMed ID: 11721008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.