BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 7758469)

  • 1. Influence of Ca2+ on conformation and stability of three bacterial hybrid glucanases.
    Welfle K; Misselwitz R; Welfle H; Politz O; Borriss R
    Eur J Biochem; 1995 May; 229(3):726-35. PubMed ID: 7758469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Individual amino acids in the N-terminal loop region determine the thermostability and unfolding characteristics of bacterial glucanases.
    Welfle K; Misselwitz R; Politz O; Borriss R; Welfle H
    Protein Sci; 1996 Nov; 5(11):2255-65. PubMed ID: 8931144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cation binding to a Bacillus (1,3-1,4)-beta-glucanase. Geometry, affinity and effect on protein stability.
    Keitel T; Meldgaard M; Heinemann U
    Eur J Biochem; 1994 May; 222(1):203-14. PubMed ID: 8200344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different effects of N-glycosylation on the thermostability of highly homologous bacterial (1,3-1,4)-beta-glucanases secreted from yeast.
    Meldgaard M; Svendsen I
    Microbiology (Reading); 1994 Jan; 140 ( Pt 1)():159-66. PubMed ID: 8162185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure and site-directed mutagenesis of Bacillus macerans endo-1,3-1,4-beta-glucanase.
    Hahn M; Olsen O; Politz O; Borriss R; Heinemann U
    J Biol Chem; 1995 Feb; 270(7):3081-8. PubMed ID: 7852389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants for the enhanced thermostability of hybrid (1-3,1-4)-beta-glucanases.
    Politz O; Simon O; Olsen O; Borriss R
    Eur J Biochem; 1993 Sep; 216(3):829-34. PubMed ID: 8404902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures and properties of de novo circularly permuted 1,3-1,4-beta-glucanases.
    Aÿ J; Hahn M; Decanniere K; Piotukh K; Borriss R; Heinemann U
    Proteins; 1998 Feb; 30(2):155-67. PubMed ID: 9489923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid bacillus endo-(1-3,1-4)-beta-glucanases: construction of recombinant genes and molecular properties of the gene products.
    Borriss R; Olsen O; Thomsen KK; von Wettstein D
    Carlsberg Res Commun; 1989; 54(2):41-54. PubMed ID: 2673278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal and molecular structure at 0.16-nm resolution of the hybrid Bacillus endo-1,3-1,4-beta-D-glucan 4-glucanohydrolase H(A16-M).
    Hahn M; Keitel T; Heinemann U
    Eur J Biochem; 1995 Sep; 232(3):849-58. PubMed ID: 7588726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Bacillus (1-3,1-4)-beta-glucanases: engineering thermostable enzymes by construction of hybrid genes.
    Olsen O; Borriss R; Simon O; Thomsen KK
    Mol Gen Genet; 1991 Feb; 225(2):177-85. PubMed ID: 2005860
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: homologies to other beta-glucanases.
    Borriss R; Buettner K; Maentsaelae P
    Mol Gen Genet; 1990 Jul; 222(2-3):278-83. PubMed ID: 2274030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of a natural circularly permuted jellyroll protein: 1,3-1,4-beta-D-glucanase from Fibrobacter succinogenes.
    Tsai LC; Shyur LF; Lee SH; Lin SS; Yuan HS
    J Mol Biol; 2003 Jul; 330(3):607-20. PubMed ID: 12842475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microcalorimetric determination of the thermostability of three hybrid (1-3,1-4)-beta-glucanases.
    Welfle K; Misselwitz R; Welfle H; Simon O; Politz O; Borriss R
    J Biomol Struct Dyn; 1994 Jun; 11(6):1417-24. PubMed ID: 7946082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of active site carboxylic residues in Bacillus licheniformis 1,3-1,4-beta-D-glucan 4-glucanohydrolase by site-directed mutagenesis.
    Juncosa M; Pons J; Dot T; Querol E; Planas A
    J Biol Chem; 1994 May; 269(20):14530-5. PubMed ID: 8182059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering of dual-functional hybrid glucanases.
    Liu WC; Lin YS; Jeng WY; Chen JH; Wang AH; Shyur LF
    Protein Eng Des Sel; 2012 Nov; 25(11):771-80. PubMed ID: 23081838
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous enhanced catalytic activity and thermostability of a 1,3-1,4-β-glucanase from Bacillus amyloliqueformis by chemical modification of lysine residues.
    Niu C; Zhu L; Wang J; Li Q
    Biotechnol Lett; 2014 Dec; 36(12):2453-60. PubMed ID: 25048240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymology and folding of natural and engineered bacterial beta-glucanases studied by X-ray crystallography.
    Heinemann U; Aÿ J; Gaiser O; Müller JJ; Ponnuswamy MN
    Biol Chem; 1996; 377(7-8):447-54. PubMed ID: 8922278
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Native-like in vivo folding of a circularly permuted jellyroll protein shown by crystal structure analysis.
    Hahn M; Piotukh K; Borriss R; Heinemann U
    Proc Natl Acad Sci U S A; 1994 Oct; 91(22):10417-21. PubMed ID: 7937966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of barley 1,3-1,4-beta-glucanase at 2.0-A resolution and comparison with Bacillus 1,3-1,4-beta-glucanase.
    Müller JJ; Thomsen KK; Heinemann U
    J Biol Chem; 1998 Feb; 273(6):3438-46. PubMed ID: 9452466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A truncated Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase with improved enzymatic activity and thermotolerance.
    Wen TN; Chen JL; Lee SH; Yang NS; Shyur LF
    Biochemistry; 2005 Jun; 44(25):9197-205. PubMed ID: 15966744
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.