BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 7758539)

  • 1. Plasmodium gallinaceum: a refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae.
    Vernick KD; Fujioka H; Seeley DC; Tandler B; Aikawa M; Miller LH
    Exp Parasitol; 1995 Jun; 80(4):583-95. PubMed ID: 7758539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmodium gallinaceum: a novel morphology of malaria ookinetes in the midgut of the mosquito vector.
    Vernick KD; Fujioka H; Aikawa M
    Exp Parasitol; 1999 Apr; 91(4):362-6. PubMed ID: 10092481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmodium vivax: ookinete destruction and oocyst development arrest are responsible for Anopheles albimanus resistance to circumsporozoite phenotype VK247 parasites.
    Gonzalez-Ceron L; Rodriguez MH; Santillan F; Chavez B; Nettel JA; Hernandez-Avila JE; Kain KC
    Exp Parasitol; 2001 Jul; 98(3):152-61. PubMed ID: 11527438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mosquito-Plasmodium interactions in response to immune activation of the vector.
    Lowenberger CA; Kamal S; Chiles J; Paskewitz S; Bulet P; Hoffmann JA; Christensen BM
    Exp Parasitol; 1999 Jan; 91(1):59-69. PubMed ID: 9920043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A major genetic locus controlling natural Plasmodium falciparum infection is shared by East and West African Anopheles gambiae.
    Riehle MM; Markianos K; Lambrechts L; Xia A; Sharakhov I; Koella JC; Vernick KD
    Malar J; 2007 Jul; 6():87. PubMed ID: 17612409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmodium gallinaceum: ookinete formation and proteolytic enzyme dynamics in highly refractory Aedes aegypti populations.
    Kaplan RA; Zwiers SH; Yan G
    Exp Parasitol; 2001 Jul; 98(3):115-22. PubMed ID: 11527434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic loci affecting resistance to human malaria parasites in a West African mosquito vector population.
    Niaré O; Markianos K; Volz J; Oduol F; Touré A; Bagayoko M; Sangaré D; Traoré SF; Wang R; Blass C; Dolo G; Bouaré M; Kafatos FC; Kruglyak L; Touré YT; Vernick KD
    Science; 2002 Oct; 298(5591):213-6. PubMed ID: 12364806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A shared genetic mechanism for melanotic encapsulation of CM-Sephadex beads and a malaria parasite, Plasmodium cynomolgi B, in the mosquito, Anopheles gambiae.
    Gorman MJ; Cornel AJ; Collins FH; Paskewitz SM
    Exp Parasitol; 1996 Dec; 84(3):380-6. PubMed ID: 8948327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmodium gallinaceum: mosquito peritrophic matrix and the parasite-vector compatibility.
    Shahabuddin M; Kaidoh T; Aikawa M; Kaslow DC
    Exp Parasitol; 1995 Nov; 81(3):386-93. PubMed ID: 7498435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How does Anopheles gambiae kill malaria parasites?
    Dimopoulos G; Müller HM; Kafatos FC
    Parassitologia; 1999 Sep; 41(1-3):169-75. PubMed ID: 10697851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plasmodium gallinaceum: fluorescent staining of zygotes and ookinetes to study malaria parasites in mosquito.
    Shahabuddin M; Gayle M; Zieler H; Laughinghouse A
    Exp Parasitol; 1998 Feb; 88(2):79-84. PubMed ID: 9538861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time, in vivo analysis of malaria ookinete locomotion and mosquito midgut invasion.
    Vlachou D; Zimmermann T; Cantera R; Janse CJ; Waters AP; Kafatos FC
    Cell Microbiol; 2004 Jul; 6(7):671-85. PubMed ID: 15186403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi, Anopheles gambiae and Aedes aegypti.
    Alavi Y; Arai M; Mendoza J; Tufet-Bayona M; Sinha R; Fowler K; Billker O; Franke-Fayard B; Janse CJ; Waters A; Sinden RE
    Int J Parasitol; 2003 Aug; 33(9):933-43. PubMed ID: 12906877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphological evidence for proliferative regeneration of the Anopheles stephensi midgut epithelium following Plasmodium falciparum ookinete invasion.
    Baton LA; Ranford-Cartwright LC
    J Invertebr Pathol; 2007 Nov; 96(3):244-54. PubMed ID: 17575986
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genetic module regulates the melanization response of Anopheles to Plasmodium.
    Volz J; Müller HM; Zdanowicz A; Kafatos FC; Osta MA
    Cell Microbiol; 2006 Sep; 8(9):1392-405. PubMed ID: 16922859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fz2 and cdc42 mediate melanization and actin polymerization but are dispensable for Plasmodium killing in the mosquito midgut.
    Shiao SH; Whitten MM; Zachary D; Hoffmann JA; Levashina EA
    PLoS Pathog; 2006 Dec; 2(12):e133. PubMed ID: 17196037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae.
    Vaughan JA; Noden BH; Beier JC
    J Parasitol; 1992 Aug; 78(4):716-24. PubMed ID: 1635032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The development of Plasmodium falciparum in experimentally infected Anopheles gambiae (Diptera: Culicidae) under ambient microhabitat temperature in western Kenya.
    Okech BA; Gouagna LC; Walczak E; Kabiru EW; Beier JC; Yan G; Githure JI
    Acta Trop; 2004 Oct; 92(2):99-108. PubMed ID: 15350861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic selection of a Plasmodium-refractory strain of the malaria vector Anopheles gambiae.
    Collins FH; Sakai RK; Vernick KD; Paskewitz S; Seeley DC; Miller LH; Collins WE; Campbell CC; Gwadz RW
    Science; 1986 Oct; 234(4776):607-10. PubMed ID: 3532325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic basis of encapsulation response in Anopheles gambiae.
    Zheng L
    Parassitologia; 1999 Sep; 41(1-3):181-4. PubMed ID: 10697853
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.