These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7758582)

  • 1. Relaxing the substrate specificity of an aminoacyl-tRNA synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids.
    Ibba M; Hennecke H
    FEBS Lett; 1995 May; 364(3):272-5. PubMed ID: 7758582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A designed phenylalanyl-tRNA synthetase variant allows efficient in vivo incorporation of aryl ketone functionality into proteins.
    Datta D; Wang P; Carrico IS; Mayo SL; Tirrell DA
    J Am Chem Soc; 2002 May; 124(20):5652-3. PubMed ID: 12010034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase.
    Roy H; Ling J; Irnov M; Ibba M
    EMBO J; 2004 Nov; 23(23):4639-48. PubMed ID: 15526031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations.
    Kast P; Hennecke H
    J Mol Biol; 1991 Nov; 222(1):99-124. PubMed ID: 1942071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient introduction of aryl bromide functionality into proteins in vivo.
    Sharma N; Furter R; Kast P; Tirrell DA
    FEBS Lett; 2000 Feb; 467(1):37-40. PubMed ID: 10664452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual screening for binding of phenylalanine analogues to phenylalanyl-tRNA synthetase.
    Wang P; Vaidehi N; Tirrell DA; Goddard WA
    J Am Chem Soc; 2002 Dec; 124(48):14442-9. PubMed ID: 12452720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prokaryotic and eukaryotic tetrameric phenylalanyl-tRNA synthetases display conservation of the binding mode of the tRNA(Phe) CCA end.
    Moor N; Lavrik O; Favre A; Safro M
    Biochemistry; 2003 Sep; 42(36):10697-708. PubMed ID: 12962494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase.
    Kotik-Kogan O; Moor N; Tworowski D; Safro M
    Structure; 2005 Dec; 13(12):1799-807. PubMed ID: 16338408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of aminoacyl-tRNA synthetase quaternary structure and activity: Saccharomyces cerevisiae mitochondrial phenylalanyl-tRNA synthetase.
    Sanni A; Walter P; Boulanger Y; Ebel JP; Fasiolo F
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8387-91. PubMed ID: 1924298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylalanyl-tRNA synthetase contains a dispensable RNA-binding domain that contributes to the editing of noncognate aminoacyl-tRNA.
    Roy H; Ibba M
    Biochemistry; 2006 Aug; 45(30):9156-62. PubMed ID: 16866361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary aspects of accuracy of phenylalanyl-tRNA synthetase. A comparative study with enzymes from Escherichia coli, Saccharomyces cerevisiae, Neurospora crassa, and turkey liver using phenylalanine analogues.
    Gabius HJ; von der Haar F; Cramer F
    Biochemistry; 1983 May; 22(10):2331-9. PubMed ID: 6222761
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoreactive bicyclic amino acids as substrates for mutant Escherichia coli phenylalanyl-tRNA synthetases.
    Bentin T; Hamzavi R; Salomonsson J; Roy H; Ibba M; Nielsen PE
    J Biol Chem; 2004 May; 279(19):19839-45. PubMed ID: 15004015
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase.
    Ibba M; Kast P; Hennecke H
    Biochemistry; 1994 Jun; 33(23):7107-12. PubMed ID: 8003476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Biosynthesis of a β-Amino Acid-Containing Protein.
    Melo Czekster C; Robertson WE; Walker AS; Söll D; Schepartz A
    J Am Chem Soc; 2016 Apr; 138(16):5194-7. PubMed ID: 27086674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site.
    Aphasizhev R; Senger B; Rengers JU; Sprinzl M; Walter P; Nussbaum G; Fasiolo F
    Biochemistry; 1996 Jan; 35(1):117-23. PubMed ID: 8555164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple Quality Control Pathways Limit Non-protein Amino Acid Use by Yeast Cytoplasmic Phenylalanyl-tRNA Synthetase.
    Moghal A; Hwang L; Faull K; Ibba M
    J Biol Chem; 2016 Jul; 291(30):15796-805. PubMed ID: 27226603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of aminoacyl-tRNA synthetase specific for p-acetyl-L-phenylalanine.
    Sun R; Zheng H; Fang Z; Yao W
    Biochem Biophys Res Commun; 2010 Jan; 391(1):709-15. PubMed ID: 19944076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenylalanyl-tRNA synthetase of Escherichia coli K 10. Multiple enzyme-aminoacyl-tRNA complexes as a consequence of substrate specificity.
    Güntner C; Holler E
    Biochemistry; 1979 May; 18(10):2028-38. PubMed ID: 373798
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificial extracellular matrix proteins containing phenylalanine analogues biosynthesized in bacteria using T7 expression system and the PEGylation.
    Takasu A; Kondo S; Ito A; Furukawa Y; Higuchi M; Kinoshita T; Kwon I
    Biomacromolecules; 2011 Oct; 12(10):3444-52. PubMed ID: 21823658
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recognition of tRNAPhe by phenylalanyl-tRNA synthetase of Thermus thermophilus.
    Moor NA; Ankilova VN; Lavrik OI
    Eur J Biochem; 1995 Dec; 234(3):897-902. PubMed ID: 8575450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.