These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 7759420)

  • 1. K+ balance of the quadriceps muscle during dynamic exercise with and without beta-adrenoceptor blockade.
    Gullestad L; Hallén J; Sejersted OM
    J Appl Physiol (1985); 1995 Feb; 78(2):513-23. PubMed ID: 7759420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K+ shifts of skeletal muscle during stepwise bicycle exercise with and without beta-adrenoceptor blockade.
    Hallén J; Gullestad L; Sejersted OM
    J Physiol; 1994 May; 477(Pt 1):149-59. PubMed ID: 8071881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variable effects of beta-adrenoceptor blockade on muscle blood flow during exercise.
    Gullestad L; Hallén J; Sejersted OM
    Acta Physiol Scand; 1993 Nov; 149(3):257-71. PubMed ID: 7906074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contracting human skeletal muscle maintains the ability to blunt α1 -adrenergic vasoconstriction during KIR channel and Na(+) /K(+) -ATPase inhibition.
    Crecelius AR; Kirby BS; Hearon CM; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2015 Jun; 593(12):2735-51. PubMed ID: 25893955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beta 2-adrenergic stimulation does not prevent potassium loss from exercising quadriceps muscle.
    Rolett EL; Strange S; Sjøgaard G; Kiens B; Saltin B
    Am J Physiol; 1990 May; 258(5 Pt 2):R1192-200. PubMed ID: 1970926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Myocardial potassium balance associated with regional ischaemia in the pig: effects of beta-adrenoceptor blockade, duration of ischaemia and preceding ischaemic periods.
    Aksnes G; Kirkebøen KA; Lande K; Ilebekk A
    Acta Physiol Scand; 1992 May; 145(1):39-48. PubMed ID: 1354407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of exercise intensity on potassium balance in muscle and blood of man.
    Vøllestad NK; Hallén J; Sejersted OM
    J Physiol; 1994 Mar; 475(2):359-68. PubMed ID: 8021842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high-intensity intermittent training on potassium kinetics and performance in human skeletal muscle.
    Nielsen JJ; Mohr M; Klarskov C; Kristensen M; Krustrup P; Juel C; Bangsbo J
    J Physiol; 2004 Feb; 554(Pt 3):857-70. PubMed ID: 14634198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ balance during exercise and role of beta-adrenergic stimulation.
    Hallén J; Saltin B; Sejersted OM
    Am J Physiol; 1996 Jun; 270(6 Pt 2):R1347-54. PubMed ID: 8764303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loss of potassium from muscle during moderate exercise in humans: a result of insufficient activation of the Na+-K+-pump?
    Verburg E; Hallén J; Sejersted OM; Vøllestad NK
    Acta Physiol Scand; 1999 Apr; 165(4):357-67. PubMed ID: 10350230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of beta-blockade on plasma potassium concentrations and muscle excitability following static exercise.
    Unsworth K; Hicks A; McKelvie R
    Pflugers Arch; 1998 Aug; 436(3):449-56. PubMed ID: 9644229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adrenergic blockade reduces skeletal muscle glycolysis and Na(+), K(+)-ATPase activity during hemorrhage.
    McCarter FD; James JH; Luchette FA; Wang L; Friend LA; King JK; Evans JM; George MA; Fischer JE
    J Surg Res; 2001 Aug; 99(2):235-44. PubMed ID: 11469892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digoxin affects potassium homeostasis during exercise in patients with heart failure.
    Schmidt TA; Bundgaard H; Olesen HL; Secher NH; Kjeldsen K
    Cardiovasc Res; 1995 Apr; 29(4):506-11. PubMed ID: 7796444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of selective and nonselective beta-blockade on skeletal muscle excitability and fatiguability.
    Cupido CM; Hicks AL; McKelvie RS; Sale DG; McComas AJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2461-6. PubMed ID: 7928871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. K+ balance in humans during exercise.
    Hallén J
    Acta Physiol Scand; 1996 Mar; 156(3):279-86. PubMed ID: 8729688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium fluxes in contracting human skeletal muscle and red blood cells.
    Juel C; Hellsten Y; Saltin B; Bangsbo J
    Am J Physiol; 1999 Jan; 276(1):R184-8. PubMed ID: 9887193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intravasal use of pliable K(+)-selective electrodes in the femoral vein of humans during exercise.
    Hallén J; Sejersted OM
    J Appl Physiol (1985); 1993 Nov; 75(5):2318-25. PubMed ID: 8307891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of dexamethasone on skeletal muscle Na+,K+ pump subunit specific expression and K+ homeostasis during exercise in humans.
    Nordsborg N; Ovesen J; Thomassen M; Zangenberg M; Jøns C; Iaia FM; Nielsen JJ; Bangsbo J
    J Physiol; 2008 Mar; 586(5):1447-59. PubMed ID: 18174214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leg vasoconstriction during dynamic exercise with reduced cardiac output.
    Pawelczyk JA; Hanel B; Pawelczyk RA; Warberg J; Secher NH
    J Appl Physiol (1985); 1992 Nov; 73(5):1838-46. PubMed ID: 1474060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endurance Training Improves Leg Proton Release and Decreases Potassium Release During High-Intensity Exercise in Normoxia and Hypobaric Hypoxia.
    Skattebo Ø; Capelli C; Calbet JAL; Hallén J
    Scand J Med Sci Sports; 2024 Jul; 34(7):e14688. PubMed ID: 38973702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.