These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 7759518)
1. Uncoupling in secondary transport proteins. A mechanistic explanation for mutants of lac permease with an uncoupled phenotype. Lolkema JS; Poolman B J Biol Chem; 1995 May; 270(21):12670-6. PubMed ID: 7759518 [TBL] [Abstract][Full Text] [Related]
2. Kinetic analysis of lactose and proton coupling in Glu379 mutants of the lactose transport protein of Streptococcus thermophilus. Poolman B; Knol J; Lolkema JS J Biol Chem; 1995 Jun; 270(22):12995-3003. PubMed ID: 7768891 [TBL] [Abstract][Full Text] [Related]
3. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. II. Second site revertants of the thiodigalactoside-dependent proton leak by the Val177/Asn319 permease. Eelkema JA; O'Donnell MA; Brooker RJ J Biol Chem; 1991 Mar; 266(7):4139-44. PubMed ID: 1999408 [TBL] [Abstract][Full Text] [Related]
4. An analysis of lactose permease "sugar specificity" mutations which also affect the coupling between proton and lactose transport. I. Val177 and Val177/Asn319 permeases facilitate proton uniport and sugar uniport. Brooker RJ J Biol Chem; 1991 Mar; 266(7):4131-8. PubMed ID: 1999407 [TBL] [Abstract][Full Text] [Related]
5. A triple mutant, K319N/H322Q/E325Q, of the lactose permease cotransports H+ with thiodigalactoside. Johnson JL; Lockheart MS; Brooker RJ J Membr Biol; 2001 Jun; 181(3):215-24. PubMed ID: 11420608 [TBL] [Abstract][Full Text] [Related]
6. Towards an understanding of the structural basis of 'forbidden' transport pathways in the Escherichia coli lactose carrier: mutations probing the energy barriers to uncoupled transport. King SC; Wilson TH Mol Microbiol; 1990 Sep; 4(9):1433-8. PubMed ID: 2287270 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Escherichia coli lactose carrier mutants that transport protons without a cosubstrate. Probes for the energy barrier to uncoupled transport. King SC; Wilson TH J Biol Chem; 1990 Jun; 265(17):9645-51. PubMed ID: 2161839 [TBL] [Abstract][Full Text] [Related]
8. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation. Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006 [TBL] [Abstract][Full Text] [Related]
9. Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport. Herzlinger D; Carrasco N; Kaback HR Biochemistry; 1985 Jan; 24(1):221-9. PubMed ID: 3888256 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of enhanced melibiose transport rate catalyzed by an Escherichia coli lactose carrier mutant with leucine substituted for serine-306. The pH-dependence of melibiose efflux. King SC; Wilson TH Biochim Biophys Acta; 1990 Mar; 1022(3):373-80. PubMed ID: 2156561 [TBL] [Abstract][Full Text] [Related]
11. A K319N/E325Q double mutant of the lactose permease cotransports H+ with lactose. Implications for a proposed mechanism of H+/lactose symport. Johnson JL; Brooker RJ J Biol Chem; 1999 Feb; 274(7):4074-81. PubMed ID: 9933600 [TBL] [Abstract][Full Text] [Related]
12. Exchange, efflux, and substrate binding by cysteine mutants of the lactose permease of Escherichia coli. van Iwaarden PR; Driessen AJ; Lolkema JS; Kaback HR; Konings WN Biochemistry; 1993 May; 32(20):5419-24. PubMed ID: 8499445 [TBL] [Abstract][Full Text] [Related]
13. Functional roles of Glu-269 and Glu-325 within the lactose permease of Escherichia coli. Franco PJ; Brooker RJ J Biol Chem; 1994 Mar; 269(10):7379-86. PubMed ID: 7907327 [TBL] [Abstract][Full Text] [Related]
14. The role of protons in the mechanism of galactoside transport via the lactose permease of Escherichia coli. Page MG Biochim Biophys Acta; 1987 Feb; 897(1):112-26. PubMed ID: 3026476 [TBL] [Abstract][Full Text] [Related]
15. Dependence on pH of substrate binding to lactose carrier in Escherichia coli cytoplasmic membranes. Yamato I; Rosenbusch JP FEBS Lett; 1983 Jan; 151(1):102-4. PubMed ID: 6297984 [TBL] [Abstract][Full Text] [Related]
16. Manipulating conformational equilibria in the lactose permease of Escherichia coli. Weinglass AB; Sondej M; Kaback HR J Mol Biol; 2002 Jan; 315(4):561-71. PubMed ID: 11812130 [TBL] [Abstract][Full Text] [Related]
17. Kinetic analysis of lactose exchange in proteoliposomes reconstituted with purified lac permease. Lolkema JS; Carrasco N; Kaback HR Biochemistry; 1991 Feb; 30(5):1284-90. PubMed ID: 1991109 [TBL] [Abstract][Full Text] [Related]
18. Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. Bogdanov M; Dowhan W J Biol Chem; 1995 Jan; 270(2):732-9. PubMed ID: 7822303 [TBL] [Abstract][Full Text] [Related]
19. From membrane to molecule to the third amino acid from the left with a membrane transport protein. Kaback HR; Wu J Q Rev Biophys; 1997 Nov; 30(4):333-64. PubMed ID: 9634651 [TBL] [Abstract][Full Text] [Related]
20. Evidence that the asparagine 322 mutant of the lactose permease transports protons and lactose with a normal stoichiometry and accumulates lactose against a concentration gradient. Franco PJ; Brooker RJ J Biol Chem; 1991 Apr; 266(11):6693-9. PubMed ID: 1849889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]