BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 7759539)

  • 1. Analysis of positive elements sensitive to glucose in the promoter of the FBP1 gene from yeast.
    Vincent O; Gancedo JM
    J Biol Chem; 1995 May; 270(21):12832-8. PubMed ID: 7759539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae.
    Hedges D; Proft M; Entian KD
    Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae.
    Schöler A; Schüller HJ
    Mol Cell Biol; 1994 Jun; 14(6):3613-22. PubMed ID: 8196607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulatory regions in the yeast FBP1 and PCK1 genes.
    Mercado JJ; Gancedo JM
    FEBS Lett; 1992 Oct; 311(2):110-4. PubMed ID: 1327878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1.
    Mercado JJ; Vincent O; Gancedo JM
    FEBS Lett; 1991 Oct; 291(1):97-100. PubMed ID: 1657641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of upstream activating elements in the promoter of the FBP1 gene from Saccharomyces cerevisiae.
    de Mesquita JF; Zaragoza O; Gancedo JM
    Curr Genet; 1998 Jun; 33(6):406-11. PubMed ID: 9644203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae.
    Zaragoza O; Vincent O; Gancedo JM
    Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase.
    Niederacher D; Schüller HJ; Grzesitza D; Gütlich H; Hauser HP; Wagner T; Entian KD
    Curr Genet; 1992 Nov; 22(5):363-70. PubMed ID: 1330335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyclic AMP can decrease expression of genes subject to catabolite repression in Saccharomyces cerevisiae.
    Zaragoza O; Lindley C; Gancedo JM
    J Bacteriol; 1999 Apr; 181(8):2640-2. PubMed ID: 10198033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae.
    Entian KD; Vogel RF; Rose M; Hofmann L; Mecke D
    FEBS Lett; 1988 Aug; 236(1):195-200. PubMed ID: 2841162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex.
    Janoo RT; Neely LA; Braun BR; Whitehall SK; Hoffman CS
    Genetics; 2001 Mar; 157(3):1205-15. PubMed ID: 11238405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene.
    Herrero P; Flores L; de la Cera T; Moreno F
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):319-25. PubMed ID: 10510295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling.
    Hirota K; Hoffman CS; Ohta K
    Eukaryot Cell; 2006 Dec; 5(12):1980-9. PubMed ID: 17028240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose.
    Navas MA; Cerdán S; Gancedo JM
    Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1290-4. PubMed ID: 8381962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae.
    Watanabe K; Yabe M; Kasahara K; Kokubo T
    PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic analysis of serine biosynthesis and glucose repression in yeast.
    Melcher K; Entian KD
    Curr Genet; 1992 Apr; 21(4-5):295-300. PubMed ID: 1326413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the gene for fructose-1,6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sequence, protein homology, and expression during growth on glucose.
    Rogers DT; Hiller E; Mitsock L; Orr E
    J Biol Chem; 1988 May; 263(13):6051-7. PubMed ID: 2834361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis.
    Georis I; Krijger JJ; Breunig KD; Vandenhaute J
    Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct upstream activation regions for glucose-repressed and derepressed expression of the yeast citrate synthase gene CIT1.
    Rosenkrantz M; Kell CS; Pennell EA; Webster M; Devenish LJ
    Curr Genet; 1994 Mar; 25(3):185-95. PubMed ID: 7923403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.