These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 7759539)
1. Analysis of positive elements sensitive to glucose in the promoter of the FBP1 gene from yeast. Vincent O; Gancedo JM J Biol Chem; 1995 May; 270(21):12832-8. PubMed ID: 7759539 [TBL] [Abstract][Full Text] [Related]
2. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Hedges D; Proft M; Entian KD Mol Cell Biol; 1995 Apr; 15(4):1915-22. PubMed ID: 7891685 [TBL] [Abstract][Full Text] [Related]
3. A carbon source-responsive promoter element necessary for activation of the isocitrate lyase gene ICL1 is common to genes of the gluconeogenic pathway in the yeast Saccharomyces cerevisiae. Schöler A; Schüller HJ Mol Cell Biol; 1994 Jun; 14(6):3613-22. PubMed ID: 8196607 [TBL] [Abstract][Full Text] [Related]
4. Regulatory regions in the yeast FBP1 and PCK1 genes. Mercado JJ; Gancedo JM FEBS Lett; 1992 Oct; 311(2):110-4. PubMed ID: 1327878 [TBL] [Abstract][Full Text] [Related]
5. Regions in the promoter of the yeast FBP1 gene implicated in catabolite repression may bind the product of the regulatory gene MIG1. Mercado JJ; Vincent O; Gancedo JM FEBS Lett; 1991 Oct; 291(1):97-100. PubMed ID: 1657641 [TBL] [Abstract][Full Text] [Related]
6. Functional analysis of upstream activating elements in the promoter of the FBP1 gene from Saccharomyces cerevisiae. de Mesquita JF; Zaragoza O; Gancedo JM Curr Genet; 1998 Jun; 33(6):406-11. PubMed ID: 9644203 [TBL] [Abstract][Full Text] [Related]
7. Regulatory elements in the FBP1 promoter respond differently to glucose-dependent signals in Saccharomyces cerevisiae. Zaragoza O; Vincent O; Gancedo JM Biochem J; 2001 Oct; 359(Pt 1):193-201. PubMed ID: 11563983 [TBL] [Abstract][Full Text] [Related]
8. Identification of UAS elements and binding proteins necessary for derepression of Saccharomyces cerevisiae fructose-1,6-bisphosphatase. Niederacher D; Schüller HJ; Grzesitza D; Gütlich H; Hauser HP; Wagner T; Entian KD Curr Genet; 1992 Nov; 22(5):363-70. PubMed ID: 1330335 [TBL] [Abstract][Full Text] [Related]
9. Cyclic AMP can decrease expression of genes subject to catabolite repression in Saccharomyces cerevisiae. Zaragoza O; Lindley C; Gancedo JM J Bacteriol; 1999 Apr; 181(8):2640-2. PubMed ID: 10198033 [TBL] [Abstract][Full Text] [Related]
10. Bhondeley M; Liu Z Genes (Basel); 2024 Aug; 15(9):. PubMed ID: 39336719 [TBL] [Abstract][Full Text] [Related]
11. Isolation and primary structure of the gene encoding fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. Entian KD; Vogel RF; Rose M; Hofmann L; Mecke D FEBS Lett; 1988 Aug; 236(1):195-200. PubMed ID: 2841162 [TBL] [Abstract][Full Text] [Related]
12. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae. Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116 [TBL] [Abstract][Full Text] [Related]
13. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Janoo RT; Neely LA; Braun BR; Whitehall SK; Hoffman CS Genetics; 2001 Mar; 157(3):1205-15. PubMed ID: 11238405 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene. Herrero P; Flores L; de la Cera T; Moreno F Biochem J; 1999 Oct; 343 Pt 2(Pt 2):319-25. PubMed ID: 10510295 [TBL] [Abstract][Full Text] [Related]
15. Reciprocal nuclear shuttling of two antagonizing Zn finger proteins modulates Tup family corepressor function to repress chromatin remodeling. Hirota K; Hoffman CS; Ohta K Eukaryot Cell; 2006 Dec; 5(12):1980-9. PubMed ID: 17028240 [TBL] [Abstract][Full Text] [Related]
16. Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose. Navas MA; Cerdán S; Gancedo JM Proc Natl Acad Sci U S A; 1993 Feb; 90(4):1290-4. PubMed ID: 8381962 [TBL] [Abstract][Full Text] [Related]
17. A Random Screen Using a Novel Reporter Assay System Reveals a Set of Sequences That Are Preferred as the TATA or TATA-Like Elements in the CYC1 Promoter of Saccharomyces cerevisiae. Watanabe K; Yabe M; Kasahara K; Kokubo T PLoS One; 2015; 10(6):e0129357. PubMed ID: 26046838 [TBL] [Abstract][Full Text] [Related]
18. Genetic analysis of serine biosynthesis and glucose repression in yeast. Melcher K; Entian KD Curr Genet; 1992 Apr; 21(4-5):295-300. PubMed ID: 1326413 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the gene for fructose-1,6-bisphosphatase from Saccharomyces cerevisiae and Schizosaccharomyces pombe. Sequence, protein homology, and expression during growth on glucose. Rogers DT; Hiller E; Mitsock L; Orr E J Biol Chem; 1988 May; 263(13):6051-7. PubMed ID: 2834361 [TBL] [Abstract][Full Text] [Related]
20. Differences in regulation of yeast gluconeogenesis revealed by Cat8p-independent activation of PCK1 and FBP1 genes in Kluyveromyces lactis. Georis I; Krijger JJ; Breunig KD; Vandenhaute J Mol Gen Genet; 2000 Sep; 264(1-2):193-203. PubMed ID: 11016849 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]