These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7760266)

  • 1. Conventional 4-bar linkage knee mechanisms: a strength-weakness analysis.
    de Vries J
    J Rehabil Res Dev; 1995 Feb; 32(1):36-42. PubMed ID: 7760266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An above-knee prosthesis with a system of energy recovery: a technical note.
    Farber BS; Jacobson JS
    J Rehabil Res Dev; 1995 Nov; 32(4):337-48. PubMed ID: 8770798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions of muscle forces and toe-off kinematics to peak knee flexion during the swing phase of normal gait: an induced position analysis.
    Anderson FC; Goldberg SR; Pandy MG; Delp SL
    J Biomech; 2004 May; 37(5):731-7. PubMed ID: 15047002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pelvic and lower limb compensatory actions of subjects in an early stage of hip osteoarthritis.
    Watelain E; Dujardin F; Babier F; Dubois D; Allard P
    Arch Phys Med Rehabil; 2001 Dec; 82(12):1705-11. PubMed ID: 11733886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gait patterns in above-knee amputee patients: hydraulic swing control vs constant-friction knee components.
    Murray MP; Mollinger LA; Sepic SB; Gardner GM; Linder MT
    Arch Phys Med Rehabil; 1983 Aug; 64(8):339-45. PubMed ID: 6882172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB
    J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle-knee synchronous knee lock mechanism: a revision.
    Lee W
    Arch Phys Med Rehabil; 1982 Aug; 63(8):392-3. PubMed ID: 7115035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compensatory mechanism involving the hip joint of the intact limb during gait in unilateral trans-tibial amputees.
    Grumillier C; Martinet N; Paysant J; André JM; Beyaert C
    J Biomech; 2008 Oct; 41(14):2926-31. PubMed ID: 18771768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobility function of a prosthetic knee joint with an automatic stance phase lock.
    Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S
    Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swing phase control with knee friction in juvenile amputees.
    Hicks R; Tashman S; Cary JM; Altman RF; Gage JR
    J Orthop Res; 1985; 3(2):198-201. PubMed ID: 3998896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Compensatory mechanism involving the knee joint of the intact limb during gait in unilateral below-knee amputees.
    Beyaert C; Grumillier C; Martinet N; Paysant J; André JM
    Gait Posture; 2008 Aug; 28(2):278-84. PubMed ID: 18295487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy cost during ambulation in transfemoral amputees: a knee joint with a mechanical swing phase control vs a knee joint with a pneumatic swing phase control.
    Boonstra AM; Schrama J; Fidler V; Eisma WH
    Scand J Rehabil Med; 1995 Jun; 27(2):77-81. PubMed ID: 7569824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical strategies for successful obstacle crossing with the trailing limb in older adults with medial compartment knee osteoarthritis.
    Chen HL; Lu TW; Wang TM; Huang SC
    J Biomech; 2008; 41(4):753-61. PubMed ID: 18177877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical characterization and clinical implications of artificially induced toe-walking: differences between pure soleus, pure gastrocnemius and combination of soleus and gastrocnemius contractures.
    Matjacić Z; Olensek A; Bajd T
    J Biomech; 2006; 39(2):255-66. PubMed ID: 16321627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and quantitative evaluation of a stance-phase controlled prosthetic knee joint for children.
    Andrysek J; Naumann S; Cleghorn WL
    IEEE Trans Neural Syst Rehabil Eng; 2005 Dec; 13(4):437-43. PubMed ID: 16425824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uphill and downhill walking in unilateral lower limb amputees.
    Vrieling AH; van Keeken HG; Schoppen T; Otten E; Halbertsma JP; Hof AL; Postema K
    Gait Posture; 2008 Aug; 28(2):235-42. PubMed ID: 18242995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of prosthetic knee and ankle mechanisms to swing-phase foot clearance.
    Sensinger JW; Intawachirarat N; Gard SA
    IEEE Trans Neural Syst Rehabil Eng; 2013 Jan; 21(1):74-80. PubMed ID: 23193323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the gait performance of non-fluid-based swing-phase control mechanisms in transfemoral prostheses.
    Furse A; Cleghorn W; Andrysek J
    IEEE Trans Biomed Eng; 2011 Aug; 58(8):. PubMed ID: 21592917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.