These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 7760697)

  • 1. Solid state phosphorus-31 magnetic resonance imaging of bone mineral.
    Moore JR; Garrido L; Ackerman JL
    Magn Reson Med; 1995 Mar; 33(3):293-9. PubMed ID: 7760697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique protonated phosphate group in bone mineral not present in synthetic calcium phosphates. Identification by phosphorus-31 solid state NMR spectroscopy.
    Wu Y; Glimcher MJ; Rey C; Ackerman JL
    J Mol Biol; 1994 Dec; 244(4):423-35. PubMed ID: 7990131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative solid-state NMR imaging of synthetic calcium phosphate implants.
    Ramanathan C; Ackerman JL
    Magn Reson Med; 1999 Jun; 41(6):1214-20. PubMed ID: 10371454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multinuclear solid-state three-dimensional MRI of bone and synthetic calcium phosphates.
    Wu Y; Chesler DA; Glimcher MJ; Garrido L; Wang J; Jiang HJ; Ackerman JL
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1574-8. PubMed ID: 9990066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphorus-31 solid-state nmr in high-field gradients: prospects for imaging bone using the long echo-train summation technique (LETS).
    Gillies DG; Newling B; Randall EW
    J Magn Reson; 2001 Aug; 151(2):235-41. PubMed ID: 11531345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of bone mineral density using three-dimensional solid state phosphorus-31 NMR projection imaging.
    Wu Y; Ackerman JL; Chesler DA; Li J; Neer RM; Wang J; Glimcher MJ
    Calcif Tissue Int; 1998 Jun; 62(6):512-8. PubMed ID: 9576979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone mineral: new insights into its chemical composition.
    Von Euw S; Wang Y; Laurent G; Drouet C; Babonneau F; Nassif N; Azaïs T
    Sci Rep; 2019 Jun; 9(1):8456. PubMed ID: 31186433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphate ions in bone: identification of a calcium-organic phosphate complex by 31P solid-state NMR spectroscopy at early stages of mineralization.
    Wu Y; Ackerman JL; Strawich ES; Rey C; Kim HM; Glimcher MJ
    Calcif Tissue Int; 2003 May; 72(5):610-26. PubMed ID: 12724829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the mineral phases of bone by solid-state phosphorus-31 magic angle sample spinning nuclear magnetic resonance.
    Roufosse AH; Aue WP; Roberts JE; Glimcher MJ; Griffin RG
    Biochemistry; 1984 Dec; 23(25):6115-20. PubMed ID: 6525350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of hydroxyl ions in bone mineral by solid-state NMR spectroscopy.
    Cho G; Wu Y; Ackerman JL
    Science; 2003 May; 300(5622):1123-7. PubMed ID: 12750514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of stable strontium-rich amorphous calcium phosphate: Possible effects on bone mineral.
    Bussola Tovani C; Gloter A; Azaïs T; Selmane M; Ramos AP; Nassif N
    Acta Biomater; 2019 Jul; 92():315-324. PubMed ID: 31125726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 1H CRAMPS and 1H-31P HetCor experiments on bone, bone mineral, and model calcium phosphate phases.
    Santos RA; Wind RA; Bronnimann CE
    J Magn Reson B; 1994 Oct; 105(2):183-7. PubMed ID: 7952933
    [No Abstract]   [Full Text] [Related]  

  • 13. Solid-state phosphorus-31 nuclear magnetic resonance studies of synthetic solid phases of calcium phosphate: potential models of bone mineral.
    Aue WP; Roufosse AH; Glimcher MJ; Griffin RG
    Biochemistry; 1984 Dec; 23(25):6110-4. PubMed ID: 6525349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ADRF differential cross polarization spectroscopy of synthetic calcium phosphates and bone mineral.
    Ramanathan C; Ackerman JL
    J Magn Reson; 1997 Jul; 127(1):26-35. PubMed ID: 9245627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of 1H --> 31P NMR cross-polarization in bone apatite and its mineral standards.
    Kaflak A; Kolodziejski W
    Magn Reson Chem; 2008 Apr; 46(4):335-41. PubMed ID: 18306247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus-31 magnetic resonance imaging of hydroxyapatite: a model for bone imaging.
    Ackerman JL; Raleigh DP; Glimcher MJ
    Magn Reson Med; 1992 May; 25(1):1-11. PubMed ID: 1317501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amorphous surface layer versus transient amorphous precursor phase in bone - A case study investigated by solid-state NMR spectroscopy.
    Von Euw S; Ajili W; Chan-Chang TH; Delices A; Laurent G; Babonneau F; Nassif N; Azaïs T
    Acta Biomater; 2017 Sep; 59():351-360. PubMed ID: 28690009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P NMR relaxation of cortical bone mineral at multiple magnetic field strengths and levels of demineralization.
    Seifert AC; Wright AC; Wehrli SL; Ong HH; Li C; Wehrli FW
    NMR Biomed; 2013 Sep; 26(9):1158-66. PubMed ID: 23505120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance spin-spin relaxation of the crystals of bone, dental enamel, and synthetic hydroxyapatites.
    Wu Y; Ackerman JL; Kim HM; Rey C; Barroug A; Glimcher MJ
    J Bone Miner Res; 2002 Mar; 17(3):472-80. PubMed ID: 11874238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 1H MAS and 1H --> 31P CP/MAS NMR study of human bone mineral.
    Kaflak-Hachulska A; Samoson A; Kolodziejski W
    Calcif Tissue Int; 2003 Nov; 73(5):476-86. PubMed ID: 12958695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.