These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Dombek KM; Young ET Mol Cell Biol; 1997 Mar; 17(3):1450-8. PubMed ID: 9032272 [TBL] [Abstract][Full Text] [Related]
8. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1. Cheng C; Kacherovsky N; Dombek KM; Camier S; Thukral SK; Rhim E; Young ET Mol Cell Biol; 1994 Jun; 14(6):3842-52. PubMed ID: 8196627 [TBL] [Abstract][Full Text] [Related]
9. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Dombek KM; Camier S; Young ET Mol Cell Biol; 1993 Jul; 13(7):4391-9. PubMed ID: 8321238 [TBL] [Abstract][Full Text] [Related]
10. cAMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding. Taylor WE; Young ET Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4098-102. PubMed ID: 2161531 [TBL] [Abstract][Full Text] [Related]
11. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region. Cook WJ; Chase D; Audino DC; Denis CL Mol Cell Biol; 1994 Jan; 14(1):629-40. PubMed ID: 8264631 [TBL] [Abstract][Full Text] [Related]
12. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression. Thukral SK; Eisen A; Young ET Mol Cell Biol; 1991 Mar; 11(3):1566-77. PubMed ID: 1996109 [TBL] [Abstract][Full Text] [Related]
13. Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression. Young ET; Tachibana C; Chang HW; Dombek KM; Arms EM; Biddick R Mol Cell Biol; 2008 Apr; 28(8):2509-16. PubMed ID: 18250152 [TBL] [Abstract][Full Text] [Related]
14. Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter. Di Mauro E; Kendrew SG; Caserta M J Biol Chem; 2000 Mar; 275(11):7612-8. PubMed ID: 10713069 [TBL] [Abstract][Full Text] [Related]
15. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain. Sloan JS; Dombek KM; Young ET J Biol Chem; 1999 Dec; 274(53):37575-82. PubMed ID: 10608811 [TBL] [Abstract][Full Text] [Related]
16. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1. Vallari RC; Cook WJ; Audino DC; Morgan MJ; Jensen DE; Laudano AP; Denis CL Mol Cell Biol; 1992 Apr; 12(4):1663-73. PubMed ID: 1549119 [TBL] [Abstract][Full Text] [Related]
17. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces. Young ET; Sloan J; Miller B; Li N; van Riper K; Dombek KM Gene; 2000 Mar; 245(2):299-309. PubMed ID: 10717481 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter. Madzak C; Blanchin-Roland S; Cordero Otero RR; Gaillardin C Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():75-87. PubMed ID: 10206713 [TBL] [Abstract][Full Text] [Related]
20. Deletion analysis identifies a region, upstream of the ADH2 gene of Saccharomyces cerevisiae, which is required for ADR1-mediated derepression. Beier DR; Sledziewski A; Young ET Mol Cell Biol; 1985 Jul; 5(7):1743-9. PubMed ID: 3160930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]