These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7760841)

  • 1. Synergistic activation of ADH2 expression is sensitive to upstream activation sequence 2 (UAS2) orientation, copy number and UAS1-UAS2 helical phasing.
    Donoviel MS; Kacherovsky N; Young ET
    Mol Cell Biol; 1995 Jun; 15(6):3442-9. PubMed ID: 7760841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adjacent upstream activation sequence elements synergistically regulate transcription of ADH2 in Saccharomyces cerevisiae.
    Yu J; Donoviel MS; Young ET
    Mol Cell Biol; 1989 Jan; 9(1):34-42. PubMed ID: 2648133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adr1 and Cat8 synergistically activate the glucose-regulated alcohol dehydrogenase gene ADH2 of the yeast Saccharomyces cerevisiae.
    Walther K; Schüller HJ
    Microbiology (Reading); 2001 Aug; 147(Pt 8):2037-2044. PubMed ID: 11495982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a p53-related activation domain in Adr1p that is sufficient for ADR1-dependent gene expression.
    Young ET; Saario J; Kacherovsky N; Chao A; Sloan JS; Dombek KM
    J Biol Chem; 1998 Nov; 273(48):32080-7. PubMed ID: 9822683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and identification of genes activating UAS2-dependent ADH2 expression in Saccharomyces cerevisiae.
    Donoviel MS; Young ET
    Genetics; 1996 Jul; 143(3):1137-48. PubMed ID: 8807288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin remodeling during Saccharomyces cerevisiae ADH2 gene activation.
    Verdone L; Camilloni G; Di Mauro E; Caserta M
    Mol Cell Biol; 1996 May; 16(5):1978-88. PubMed ID: 8628264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1.
    Dombek KM; Young ET
    Mol Cell Biol; 1997 Mar; 17(3):1450-8. PubMed ID: 9032272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of potential target genes for Adr1p through characterization of essential nucleotides in UAS1.
    Cheng C; Kacherovsky N; Dombek KM; Camier S; Thukral SK; Rhim E; Young ET
    Mol Cell Biol; 1994 Jun; 14(6):3842-52. PubMed ID: 8196627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1.
    Dombek KM; Camier S; Young ET
    Mol Cell Biol; 1993 Jul; 13(7):4391-9. PubMed ID: 8321238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. cAMP-dependent phosphorylation and inactivation of yeast transcription factor ADR1 does not affect DNA binding.
    Taylor WE; Young ET
    Proc Natl Acad Sci U S A; 1990 Jun; 87(11):4098-102. PubMed ID: 2161531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of the ADR1 protein reveals multiple, functionally redundant activation domains interspersed with inhibitory regions: evidence for a repressor binding to the ADR1c region.
    Cook WJ; Chase D; Audino DC; Denis CL
    Mol Cell Biol; 1994 Jan; 14(1):629-40. PubMed ID: 8264631
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two monomers of yeast transcription factor ADR1 bind a palindromic sequence symmetrically to activate ADH2 expression.
    Thukral SK; Eisen A; Young ET
    Mol Cell Biol; 1991 Mar; 11(3):1566-77. PubMed ID: 1996109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial recruitment of mediator by the DNA-binding domain of Adr1 overcomes glucose repression of ADH2 expression.
    Young ET; Tachibana C; Chang HW; Dombek KM; Arms EM; Biddick R
    Mol Cell Biol; 2008 Apr; 28(8):2509-16. PubMed ID: 18250152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter.
    Di Mauro E; Kendrew SG; Caserta M
    J Biol Chem; 2000 Mar; 275(11):7612-8. PubMed ID: 10713069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational regulation of Adr1 activity is mediated by its DNA binding domain.
    Sloan JS; Dombek KM; Young ET
    J Biol Chem; 1999 Dec; 274(53):37575-82. PubMed ID: 10608811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose repression of the yeast ADH2 gene occurs through multiple mechanisms, including control of the protein synthesis of its transcriptional activator, ADR1.
    Vallari RC; Cook WJ; Audino DC; Morgan MJ; Jensen DE; Laudano AP; Denis CL
    Mol Cell Biol; 1992 Apr; 12(4):1663-73. PubMed ID: 1549119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of a glucose-regulated ADH gene in the genus Saccharomyces.
    Young ET; Sloan J; Miller B; Li N; van Riper K; Dombek KM
    Gene; 2000 Mar; 245(2):299-309. PubMed ID: 10717481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Factors affecting Saccharomyces cerevisiae ADH2 chromatin remodeling and transcription.
    Verdone L; Cesari F; Denis CL; Di Mauro E; Caserta M
    J Biol Chem; 1997 Dec; 272(49):30828-34. PubMed ID: 9388226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional analysis of upstream regulating regions from the Yarrowia lipolytica XPR2 promoter.
    Madzak C; Blanchin-Roland S; Cordero Otero RR; Gaillardin C
    Microbiology (Reading); 1999 Jan; 145 ( Pt 1)():75-87. PubMed ID: 10206713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion analysis identifies a region, upstream of the ADH2 gene of Saccharomyces cerevisiae, which is required for ADR1-mediated derepression.
    Beier DR; Sledziewski A; Young ET
    Mol Cell Biol; 1985 Jul; 5(7):1743-9. PubMed ID: 3160930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.