These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 7761471)
21. Effect of hemoglobin on the growth of mycobacteria and the production of siderophores. Raghu B; Sarma CR; Venkatesan P Indian J Pathol Microbiol; 1993 Oct; 36(4):376-82. PubMed ID: 8157304 [TBL] [Abstract][Full Text] [Related]
22. Mycobacterium marinum produces distinct mycobactin and carboxymycobactin siderophores to promote growth in broth and phagocytes. Knobloch P; Koliwer-Brandl H; Arnold FM; Hanna N; Gonda I; Adenau S; Personnic N; Barisch C; Seeger MA; Soldati T; Hilbi H Cell Microbiol; 2020 May; 22(5):e13163. PubMed ID: 31945239 [TBL] [Abstract][Full Text] [Related]
23. Isolation, identification, and structural analysis of the mycobactins of Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, and Mycobacterium paratuberculosis. Barclay R; Ewing DF; Ratledge C J Bacteriol; 1985 Nov; 164(2):896-903. PubMed ID: 4055700 [TBL] [Abstract][Full Text] [Related]
24. Mycobactin-mediated iron acquisition within macrophages. Luo M; Fadeev EA; Groves JT Nat Chem Biol; 2005 Aug; 1(3):149-53. PubMed ID: 16408019 [TBL] [Abstract][Full Text] [Related]
25. Effect on ribonucleotide reductase of novel lipophilic iron chelators: the desferri-exochelins. Hodges YK; Antholine WE; Horwitz LD Biochem Biophys Res Commun; 2004 Mar; 315(3):595-8. PubMed ID: 14975742 [TBL] [Abstract][Full Text] [Related]
26. The separation of the mycobactins from Mycobacterium smegmatis by using high-pressure liquid chromatography. Ratledge C; Ewing DF Biochem J; 1978 Dec; 175(3):853-7. PubMed ID: 743238 [TBL] [Abstract][Full Text] [Related]
27. The occurrence of carboxymycobactin, the siderophore of pathogenic mycobacteria, as a second extracellular siderophore in Mycobacterium smegmatis. Ratledge C; Ewing M Microbiology (Reading); 1996 Aug; 142 ( Pt 8)():2207-12. PubMed ID: 8800816 [TBL] [Abstract][Full Text] [Related]
28. Participation of iron on the growth inhibition of pathogenic strains of mycobacterium avium and M. paratuberculosis in serum. Barclay R; Ratledge C Zentralbl Bakteriol Mikrobiol Hyg A; 1986 Aug; 262(2):189-94. PubMed ID: 3788345 [TBL] [Abstract][Full Text] [Related]
29. Control of iron metabolism in Mycobacterium tuberculosis. Rodriguez GM Trends Microbiol; 2006 Jul; 14(7):320-7. PubMed ID: 16759864 [TBL] [Abstract][Full Text] [Related]
30. Determination of the structure of exochelin MN, the extracellular siderophore from Mycobacterium neoaurum. Sharman GJ; Williams DH; Ewing DF; Ratledge C Chem Biol; 1995 Aug; 2(8):553-61. PubMed ID: 9383459 [TBL] [Abstract][Full Text] [Related]
31. Exochelin production in Mycobacterium neoaurum. Chan KG Int J Mol Sci; 2009 Jan; 10(1):345-353. PubMed ID: 19333449 [TBL] [Abstract][Full Text] [Related]
32. The salicylate-derived mycobactin siderophores of Mycobacterium tuberculosis are essential for growth in macrophages. De Voss JJ; Rutter K; Schroeder BG; Su H; Zhu Y; Barry CE Proc Natl Acad Sci U S A; 2000 Feb; 97(3):1252-7. PubMed ID: 10655517 [TBL] [Abstract][Full Text] [Related]
33. Immune interference in Mycobacterium tuberculosis intracellular iron acquisition through siderocalin recognition of carboxymycobactins. Hoette TM; Clifton MC; Zawadzka AM; Holmes MA; Strong RK; Raymond KN ACS Chem Biol; 2011 Dec; 6(12):1327-31. PubMed ID: 21978368 [TBL] [Abstract][Full Text] [Related]
34. A genetic locus required for iron acquisition in Mycobacterium tuberculosis. Krithika R; Marathe U; Saxena P; Ansari MZ; Mohanty D; Gokhale RS Proc Natl Acad Sci U S A; 2006 Feb; 103(7):2069-74. PubMed ID: 16461464 [TBL] [Abstract][Full Text] [Related]
35. A covalent adduct of MbtN, an acyl-ACP dehydrogenase from Mycobacterium tuberculosis, reveals an unusual acyl-binding pocket. Chai AF; Bulloch EM; Evans GL; Lott JS; Baker EN; Johnston JM Acta Crystallogr D Biol Crystallogr; 2015 Apr; 71(Pt 4):862-72. PubMed ID: 25849397 [TBL] [Abstract][Full Text] [Related]
36. Mycobacterium tuberculosis acquires iron by cell-surface sequestration and internalization of human holo-transferrin. Boradia VM; Malhotra H; Thakkar JS; Tillu VA; Vuppala B; Patil P; Sheokand N; Sharma P; Chauhan AS; Raje M; Raje CI Nat Commun; 2014 Aug; 5():4730. PubMed ID: 25163484 [TBL] [Abstract][Full Text] [Related]
37. Role for Mycobacterium tuberculosis membrane vesicles in iron acquisition. Prados-Rosales R; Weinrick BC; Piqué DG; Jacobs WR; Casadevall A; Rodriguez GM J Bacteriol; 2014 Mar; 196(6):1250-6. PubMed ID: 24415729 [TBL] [Abstract][Full Text] [Related]
38. Identification and characterization of a major cell wall-associated iron-regulated envelope protein (Irep-28) in Mycobacterium tuberculosis. Yeruva VC; Duggirala S; Lakshmi V; Kolarich D; Altmann F; Sritharan M Clin Vaccine Immunol; 2006 Oct; 13(10):1137-42. PubMed ID: 17028216 [TBL] [Abstract][Full Text] [Related]
39. Iron Acquisition in Mycobacterium avium subsp. paratuberculosis. Wang J; Moolji J; Dufort A; Staffa A; Domenech P; Reed MB; Behr MA J Bacteriol; 2015 Dec; 198(5):857-66. PubMed ID: 26712939 [TBL] [Abstract][Full Text] [Related]
40. Lipidomic discovery of deoxysiderophores reveals a revised mycobactin biosynthesis pathway in Mycobacterium tuberculosis. Madigan CA; Cheng TY; Layre E; Young DC; McConnell MJ; Debono CA; Murry JP; Wei JR; Barry CE; Rodriguez GM; Matsunaga I; Rubin EJ; Moody DB Proc Natl Acad Sci U S A; 2012 Jan; 109(4):1257-62. PubMed ID: 22232695 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]