BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 7762299)

  • 21. Isolation and sequencing of a gene, C-ADE1, and its use for a host-vector system in Candida maltosa with two genetic markers.
    Kawai S; Hikiji T; Murao S; Takagi M; Yano K
    Agric Biol Chem; 1991 Jan; 55(1):59-65. PubMed ID: 1368674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative evolutionary genomics unveils the molecular mechanism of reassignment of the CTG codon in Candida spp.
    Massey SE; Moura G; Beltrão P; Almeida R; Garey JR; Tuite MF; Santos MA
    Genome Res; 2003 Apr; 13(4):544-57. PubMed ID: 12670996
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo reconstitution of highly active Candida maltosa cytochrome P450 monooxygenase systems in inducible membranes of Saccharomyces cerevisiae.
    Zimmer T; Kaminski K; Scheller U; Vogel F; Schunck WH
    DNA Cell Biol; 1995 Jul; 14(7):619-28. PubMed ID: 7626221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The 'polysemous' codon--a codon with multiple amino acid assignment caused by dual specificity of tRNA identity.
    Suzuki T; Ueda T; Watanabe K
    EMBO J; 1997 Mar; 16(5):1122-34. PubMed ID: 9118950
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxicity of a heterologous leucyl-tRNA (anticodon CAG) in the pathogen Candida albicans: in vivo evidence for non-standard decoding of CUG codons.
    Leuker CE; Ernst JF
    Mol Gen Genet; 1994 Oct; 245(2):212-7. PubMed ID: 7816029
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced induction of cytochromes P450alk that oxidize methyl-ends of n-alkanes and fatty acids in the long-chain dicarboxylic acid-hyperproducing mutant of Candida maltosa.
    Kogure T; Horiuchi H; Matsuda H; Arie M; Takagi M; Ohta A
    FEMS Microbiol Lett; 2007 Jun; 271(1):106-11. PubMed ID: 17403051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-universal usage of the leucine CUG codon and the molecular phylogeny of the genus Candida.
    Sugita T; Nakase T
    Syst Appl Microbiol; 1999 Feb; 22(1):79-86. PubMed ID: 10188281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The non-standard genetic code of Candida spp.: an evolving genetic code or a novel mechanism for adaptation?
    Santos MA; Ueda T; Watanabe K; Tuite MF
    Mol Microbiol; 1997 Nov; 26(3):423-31. PubMed ID: 9402014
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evidence that more than one gene encodes n-alkane-inducible cytochrome P-450s in Candida maltosa, found by two-step gene disruption.
    Ohkuma M; Hikiji T; Tanimoto T; Schunck WH; Müller HG; Yano K; Takagi M
    Agric Biol Chem; 1991 Jul; 55(7):1757-64. PubMed ID: 1368716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and molecular characterization of a gene coding D-xylulokinase (CmXYL3) from Candida maltosa.
    Guo C; He P; Lu D; Shen A; Jiang N
    J Appl Microbiol; 2006 Jul; 101(1):139-50. PubMed ID: 16834601
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Candida albicans CUG mistranslation is a mechanism to create cell surface variation.
    Miranda I; Silva-Dias A; Rocha R; Teixeira-Santos R; Coelho C; Gonçalves T; Santos MA; Pina-Vaz C; Solis NV; Filler SG; Rodrigues AG
    mBio; 2013 Aug; 4(4):. PubMed ID: 23800396
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The importance of mutation, then and now: studies with yeast cytochrome c.
    Sherman F
    Mutat Res; 2005 Jan; 589(1):1-16. PubMed ID: 15652223
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unique structure of new serine tRNAs responsible for decoding leucine codon CUG in various Candida species and their putative ancestral tRNA genes.
    Ueda T; Suzuki T; Yokogawa T; Nishikawa K; Watanabe K
    Biochimie; 1994; 76(12):1217-22. PubMed ID: 7748957
    [TBL] [Abstract][Full Text] [Related]  

  • 34. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa.
    Kogure T; Takagi M; Ohta A
    Biochem Biophys Res Commun; 2005 Apr; 329(1):78-86. PubMed ID: 15721276
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Candida albicans gene encoding the cytoplasmic leucyl-tRNA synthetase: implications for the evolution of CUG codon reassignment.
    O'Sullivan JM; Mihr MJ; Santos MA; Tuite MF
    Gene; 2001 Sep; 275(1):133-40. PubMed ID: 11574161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of codon usage and tRNAs in mitochondrial genomes of Candida species.
    Kamatani T; Yamamoto T
    Biosystems; 2007; 90(2):362-70. PubMed ID: 17123703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae.
    Percudani R; Pavesi A; Ottonello S
    J Mol Biol; 1997 May; 268(2):322-30. PubMed ID: 9159473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Differential codon usage for conserved amino acids: evidence that the serine codons TCN were primordial.
    Diaz-Lazcoz Y; Hénaut A; Vigier P; Risler JL
    J Mol Biol; 1995 Jul; 250(2):123-7. PubMed ID: 7608964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quadruplet codons: implications for code expansion and the specification of translation step size.
    Moore B; Persson BC; Nelson CC; Gesteland RF; Atkins JF
    J Mol Biol; 2000 Apr; 298(2):195-209. PubMed ID: 10764591
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein quality--a determinant of the intracellular fate of membrane-bound cytochromes P450 in yeast.
    Zimmer T; Vogel F; Ohta A; Takagi M; Schunck WH
    DNA Cell Biol; 1997 Apr; 16(4):501-14. PubMed ID: 9150438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.