These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 7762879)

  • 21. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses.
    Sallam AM; Hwang NH
    Biorheology; 1984; 21(6):783-97. PubMed ID: 6240286
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the representation of effective stress for computing hemolysis.
    Wu P; Gao Q; Hsu PL
    Biomech Model Mechanobiol; 2019 Jun; 18(3):665-679. PubMed ID: 30604300
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The cumulative and sublethal effects of turbulence on erythrocytes in a stirred-tank model.
    Aziz A; Werner BC; Epting KL; Agosti CD; Curtis WR
    Ann Biomed Eng; 2007 Dec; 35(12):2108-20. PubMed ID: 17909969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Significance of extensional stresses to red blood cell lysis in a shearing flow.
    Down LA; Papavassiliou DV; O'Rear EA
    Ann Biomed Eng; 2011 Jun; 39(6):1632-42. PubMed ID: 21298343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.
    Nygaard H; Giersiepen M; Hasenkam JM; Reul H; Paulsen PK; Rovsing PE; Westphal D
    J Biomech; 1992 Apr; 25(4):429-40. PubMed ID: 1583021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of turbulent shear stresses on the numerical blood damage prediction in a ventricular assist device.
    Torner B; Konnigk L; Wurm FH
    Int J Artif Organs; 2019 Dec; 42(12):735-747. PubMed ID: 31328604
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Turbulence characteristics downstream of bileaflet aortic valve prostheses.
    Liu JS; Lu PC; Chu SH
    J Biomech Eng; 2000 Apr; 122(2):118-24. PubMed ID: 10834151
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps.
    Thamsen B; Blümel B; Schaller J; Paschereit CO; Affeld K; Goubergrits L; Kertzscher U
    Artif Organs; 2015 Aug; 39(8):651-9. PubMed ID: 26234447
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of hemolysis in turbulent shear orifice flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 Jun; 20(6):553-9. PubMed ID: 8817954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of red blood cell deformation under fast shear flow for better estimation of hemolysis.
    Nakamura M; Bessho S; Wada S
    Int J Numer Method Biomed Eng; 2014 Jan; 30(1):42-54. PubMed ID: 23949912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of Hemolysis in Turbulent Shear Orifice Flow.
    Tamagawa M; Akamatsu T; Saitoh K
    Artif Organs; 1996 May; 20(5):553-559. PubMed ID: 28868711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shear stress related blood damage in laminar couette flow.
    Paul R; Apel J; Klaus S; Schügner F; Schwindke P; Reul H
    Artif Organs; 2003 Jun; 27(6):517-29. PubMed ID: 12780506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An in vitro investigation of the influence of stenosis severity on the flow in the ascending aorta.
    Gülan U; Lüthi B; Holzner M; Liberzon A; Tsinober A; Kinzelbach W
    Med Eng Phys; 2014 Sep; 36(9):1147-55. PubMed ID: 25066583
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of Reynolds Shear Stress Level for Hemolysis.
    Jhun CS; Stauffer MA; Reibson JD; Yeager EE; Newswanger RK; Taylor JO; Manning KB; Weiss WJ; Rosenberg G
    ASAIO J; 2018; 64(1):63-69. PubMed ID: 28661910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of turbulence on transitional flow in the FDA's benchmark nozzle model using large-eddy simulation.
    Manchester EL; Xu XY
    Int J Numer Method Biomed Eng; 2020 Oct; 36(10):e3389. PubMed ID: 32738822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Measurement of steady-flow instability and turbulence levels in Dacron vascular grafts.
    Shombert DG
    J Biomech Eng; 1992 Nov; 114(4):521-6. PubMed ID: 1487906
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mean velocities and Reynolds stresses within regurgitant jets produced by tilting disc valves.
    Baldwin JT; Tarbell JM; Deutsch S; Geselowitz DB
    ASAIO Trans; 1991; 37(3):M348-9. PubMed ID: 1751180
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A strain-based flow-induced hemolysis prediction model calibrated by in vitro erythrocyte deformation measurements.
    Chen Y; Sharp MK
    Artif Organs; 2011 Feb; 35(2):145-56. PubMed ID: 21091515
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.