BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7763228)

  • 1. Bovine adrenodoxin--a mitochondrial iron-sulphur protein--binds to chaperonin GroEL.
    Grunau C; Dettmer R; Behlke J; Bernhardt R
    Biochem Biophys Res Commun; 1995 May; 210(3):1001-8. PubMed ID: 7763228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GroEL-assisted and -unassisted refolding of mature and precursor adrenodoxin: the role of the precursor sequence.
    Bera AK; Bernhardt R
    Arch Biochem Biophys; 1999 Jul; 367(1):89-94. PubMed ID: 10375403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GroEL-assisted refolding of adrenodoxin during chemical cluster insertion.
    Iametti S; Bera AK; Vecchio G; Grinberg A; Bernhardt R; Bonomi F
    Eur J Biochem; 2001 Apr; 268(8):2421-9. PubMed ID: 11298762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide-dependent complex formation between the Escherichia coli chaperonins GroEL and GroES studied under equilibrium conditions.
    Behlke J; Ristau O; Schönfeld HJ
    Biochemistry; 1997 Apr; 36(17):5149-56. PubMed ID: 9136876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective ATPase activity and moderate chaperonin-cochaperonin interaction are important for the functional single-ring chaperonin system.
    Illingworth M; Salisbury J; Li W; Lin D; Chen L
    Biochem Biophys Res Commun; 2015 Oct; 466(1):15-20. PubMed ID: 26271593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression of chaperonin GroEL/GroES enhances in vivo folding of yeast mitochondrial aconitase and alters the growth characteristics of Escherichia coli.
    Gupta P; Aggarwal N; Batra P; Mishra S; Chaudhuri TK
    Int J Biochem Cell Biol; 2006; 38(11):1975-85. PubMed ID: 16822698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative structural-functional characterization of recombinant and natural adrenodoxin. Interaction with cytochrome P450scc.
    Lepesheva GI; Azeva TN; Strushkevich NV; Adamovich TB; Cherkesova TS; Usanov SA
    Biochemistry (Mosc); 1999 Sep; 64(9):1079-88. PubMed ID: 10521726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of E. coli chaperonin groEL from β-galactosidase without denaturation.
    Molugu SK; Li J; Bernal RA
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 Dec; 1007():93-9. PubMed ID: 26590880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate polypeptide presents a load on the apical domains of the chaperonin GroEL.
    Motojima F; Chaudhry C; Fenton WA; Farr GW; Horwich AL
    Proc Natl Acad Sci U S A; 2004 Oct; 101(42):15005-12. PubMed ID: 15479763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating the Functional Single-Ring GroEL-GroES Chaperonin Systems via Modulating GroEL-GroES Interaction.
    Illingworth M; Ellis H; Chen L
    Sci Rep; 2017 Aug; 7(1):9710. PubMed ID: 28852160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding.
    Paul S; Singh C; Mishra S; Chaudhuri TK
    FASEB J; 2007 Sep; 21(11):2874-85. PubMed ID: 17494995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Denatured proteins facilitate the formation of the football-shaped GroEL-(GroES)2 complex.
    Sameshima T; Iizuka R; Ueno T; Funatsu T
    Biochem J; 2010 Mar; 427(2):247-54. PubMed ID: 20121703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nucleotide binding-promoted conformational changes release a nonnative polypeptide from the Escherichia coli chaperonin GroEL.
    Lin Z; Eisenstein E
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1977-81. PubMed ID: 8700870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gly192 at hinge 2 site in the chaperonin GroEL plays a pivotal role in the dynamic apical domain movement that leads to GroES binding and efficient encapsulation of substrate proteins.
    Machida K; Fujiwara R; Tanaka T; Sakane I; Hongo K; Mizobata T; Kawata Y
    Biochim Biophys Acta; 2009 Sep; 1794(9):1344-54. PubMed ID: 19130907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of the GroESLx chaperonins from the symbiotic X-bacteria in Amoeba proteus.
    Jung GH; Ahn TI
    Protein Expr Purif; 2001 Dec; 23(3):459-67. PubMed ID: 11722184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. From minichaperone to GroEL 3: properties of an active single-ring mutant of GroEL.
    Chatellier J; Hill F; Foster NW; Goloubinoff P; Fersht AR
    J Mol Biol; 2000 Dec; 304(5):897-910. PubMed ID: 11124035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GroEL/GroES interaction assayed by protease protection.
    Martin J
    Methods Mol Biol; 2000; 140():71-4. PubMed ID: 11484495
    [No Abstract]   [Full Text] [Related]  

  • 18. Evidence for a lipochaperonin: association of active protein-folding GroESL oligomers with lipids can stabilize membranes under heat shock conditions.
    Török Z; Horváth I; Goloubinoff P; Kovács E; Glatz A; Balogh G; Vígh L
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2192-7. PubMed ID: 9122170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
    Shimamura T; Koike-Takeshita A; Yokoyama K; Masui R; Murai N; Yoshida M; Taguchi H; Iwata S
    Structure; 2004 Aug; 12(8):1471-80. PubMed ID: 15296740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric functional interaction between chaperonin and its plastidic cofactors.
    Guo P; Jiang S; Bai C; Zhang W; Zhao Q; Liu C
    FEBS J; 2015 Oct; 282(20):3959-70. PubMed ID: 26237751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.