These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 7763693)
1. Direct determination of the cephalosporin transforming activity of immobilized cells with use of an enzyme thermistor. 1. Verification of the mathematical model. Gemeiner P; Stefuca V; Welwardová A; Michálková E; Welward L; Kurillová L; Danielsson B Enzyme Microb Technol; 1993 Jan; 15(1):50-6. PubMed ID: 7763693 [TBL] [Abstract][Full Text] [Related]
2. Calcium pectate gel beads for cell entrapment. 6. Morphology of stabilized and hardened calcium pectate gel beads with cells for immobilized biotechnology. Kurillová L; Gemeiner P; Vikartovská A; Miková H; Rosenberg M; Ilavský M J Microencapsul; 2000; 17(3):279-96. PubMed ID: 10819417 [TBL] [Abstract][Full Text] [Related]
3. Stabilization of D-amino-acid oxidase from Trigonopsis variabilis by manganese dioxide. Vikartovská-Welwardová A; Michalková E; Gemeiner P; Welward L Folia Microbiol (Praha); 1999; 44(4):380-4. PubMed ID: 10983233 [TBL] [Abstract][Full Text] [Related]
4. Immobilization and stabilization of cephalosporin C acylase on aminated support by crosslinking with glutaraldehyde and further modifying with aminated macromolecules. He H; Wei Y; Luo H; Li X; Wang X; Liang C; Chang Y; Yu H; Shen Z Biotechnol Prog; 2015; 31(2):387-95. PubMed ID: 25641630 [TBL] [Abstract][Full Text] [Related]
5. Production of cephalosporin C by immobilized cells of Cephalosporium acremonium. Ellaiah P; Murali Chand G; Srinivasulu B; Pardhasaradhi SV Indian J Exp Biol; 2000 Nov; 38(11):1134-7. PubMed ID: 11395958 [TBL] [Abstract][Full Text] [Related]
6. Application of the enzyme thermistor to the direct estimation of intrinsic kinetics using the saccharose-immobilized invertase system. Stefuca V; Gemeiner P; Kurillová L; Danielsson B; Báles V Enzyme Microb Technol; 1990 Nov; 12(11):830-5. PubMed ID: 1366862 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a D-amino acid oxidase with high activity against cephalosporin C from the yeast Trigonopsis variabilis. Szwajcer-Dey E; Miller JR; Kovacevic S; Mosbach K Biochem Int; 1990; 20(6):1169-78. PubMed ID: 1973353 [TBL] [Abstract][Full Text] [Related]
8. Cephalosporin C production by immobilized Cephalosporium acremonium cells in a repeated batch tower bioreactor. Cruz AJ; Pan T; Giordano RC; Araujo ML; Hokka CO Biotechnol Bioeng; 2004 Jan; 85(1):96-102. PubMed ID: 14705016 [TBL] [Abstract][Full Text] [Related]
9. Cross-linked cell aggregates of Trigonopsis variabilis: D-amino acid oxidase catalyst for oxidation of cephalosporin C. Becka S; Skrob F; Plhácková K; Kujan P; Holler P; Kyslík P Biotechnol Lett; 2003 Feb; 25(3):227-33. PubMed ID: 12882576 [TBL] [Abstract][Full Text] [Related]
10. Cephalosporin C production by a highly productive Cephalosporium acremonium strain in an airlift tower loop reactor with static mixers. Zhou W; Holzhauer-Rieger K; Bayer T; Schügerl K J Biotechnol; 1993 Apr; 28(2-3):165-77. PubMed ID: 7763560 [TBL] [Abstract][Full Text] [Related]
11. Fusion protein of Vitreoscilla hemoglobin with D-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Khang YH; Kim IW; Hah YR; Hwangbo JH; Kang KK Biotechnol Bioeng; 2003 May; 82(4):480-8. PubMed ID: 12632405 [TBL] [Abstract][Full Text] [Related]
12. Simulation of diauxic production of cephalosporin C by Cephalosporium acremonium: lag model for fed-batch fermentation. Basak S; Velayudhan A; Ladisch MR Biotechnol Prog; 1995; 11(6):626-31. PubMed ID: 8541014 [TBL] [Abstract][Full Text] [Related]
13. Intraparticle concentration gradients for substrate and acidic product in immobilized cephalosporin C amidase and their dependencies on carrier characteristics and reaction parameters. Boniello C; Mayr T; Klimant I; Koenig B; Riethorst W; Nidetzky B Biotechnol Bioeng; 2010 Jul; 106(4):528-40. PubMed ID: 20148413 [TBL] [Abstract][Full Text] [Related]
14. Batch production of deacetyl 7-aminocephalosporanic acid by immobilized cephalosporin-C deacetylase. Takimoto A; Takakura T; Tani H; Yagi S; Mitsushima K Appl Microbiol Biotechnol; 2004 Aug; 65(3):263-7. PubMed ID: 15069587 [TBL] [Abstract][Full Text] [Related]
16. Expression of a cephalosporin C esterase gene in Acremonium chrysogenum for the direct production of deacetylcephalosporin C. Basch J; Franceschini T; Tonzi S; Chiang SJ J Ind Microbiol Biotechnol; 2004 Dec; 31(11):531-9. PubMed ID: 15672283 [TBL] [Abstract][Full Text] [Related]
17. Flow calorimetry--a useful tool for determination of immobilized cis-epoxysuccinate hydrolase activity from Nocardia tartaricans. Vikartovská A; Bucko M; Gemeiner P; Nahálka J; Pätoprstý V; Hrabárová E Artif Cells Blood Substit Immobil Biotechnol; 2004 Feb; 32(1):77-89. PubMed ID: 15027803 [TBL] [Abstract][Full Text] [Related]
18. The oxygenation of the 3-methyl group of 7beta-(5-D-aminoadipamido)-3-methylceph-3-em-4-carboxylic acid (desacetoxycephalosporin C) by extracts of Acremonium chrysogenum [proceedings]. Brewer SJ; Farthing JE; Turner MK Biochem Soc Trans; 1977; 5(4):1024-6. PubMed ID: 562287 [No Abstract] [Full Text] [Related]
19. Influence of medium composition on the cephalosporin C production with a highly productive strain Cephalosporium acremonium. Zhou W; Holzhauer-Rieger K; Dors M; Schügerl K J Biotechnol; 1992 May; 23(3):315-29. PubMed ID: 1368249 [TBL] [Abstract][Full Text] [Related]
20. Carbon catabolite regulation of the conversion of penicillin N into cephalosporin C. Martin-Zanca DM; Martín JF J Antibiot (Tokyo); 1983 Jun; 36(6):700-8. PubMed ID: 6683720 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]