These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
73 related articles for article (PubMed ID: 7763783)
1. Microbial degradation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene by a pure bacterial culture. Komatsu T; Omori T; Kodama T Biosci Biotechnol Biochem; 1993 May; 57(5):864-5. PubMed ID: 7763783 [No Abstract] [Full Text] [Related]
2. Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: fate of [1-13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria. Selifonov SA; Chapman PJ; Akkerman SB; Gurst JE; Bortiatynski JM; Nanny MA; Hatcher PG Appl Environ Microbiol; 1998 Apr; 64(4):1447-53. PubMed ID: 9546181 [TBL] [Abstract][Full Text] [Related]
3. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Schocken MJ; Gibson DT Appl Environ Microbiol; 1984 Jul; 48(1):10-6. PubMed ID: 6089663 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite. Mallick S Chemosphere; 2019 Mar; 219():748-755. PubMed ID: 30557732 [TBL] [Abstract][Full Text] [Related]
5. [Biodestruction of natural and artificial compounds by bacteria of the genus Pseudomonas]. Kalmazan LA; Tul'chinskaia VP Mikrobiol Zh (1978); 1980; 42(1):112-20. PubMed ID: 6988680 [No Abstract] [Full Text] [Related]
6. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Mihelcic JR; Luthy RG Appl Environ Microbiol; 1988 May; 54(5):1182-7. PubMed ID: 3389811 [TBL] [Abstract][Full Text] [Related]
7. Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Mihelcic JR; Luthy RG Appl Environ Microbiol; 1988 May; 54(5):1188-98. PubMed ID: 3389812 [TBL] [Abstract][Full Text] [Related]
8. Evidence for in situ degradation of mono-and polyaromatic hydrocarbons in alluvial sediments based on microcosm experiments with 13C-labeled contaminants. Morasch B; Höhener P; Hunkeler D Environ Pollut; 2007 Aug; 148(3):739-48. PubMed ID: 17376572 [TBL] [Abstract][Full Text] [Related]
9. Novel intermediates of acenaphthylene degradation by Rhizobium sp. strain CU-A1: evidence for naphthalene-1,8-dicarboxylic acid metabolism. Poonthrigpun S; Pattaragulwanit K; Paengthai S; Kriangkripipat T; Juntongjin K; Thaniyavarn S; Petsom A; Pinphanichakarn P Appl Environ Microbiol; 2006 Sep; 72(9):6034-9. PubMed ID: 16957226 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK. Nayak AS; Veeranagouda Y; Lee K; Karegoudar TB Biodegradation; 2009 Nov; 20(6):837-43. PubMed ID: 19543983 [TBL] [Abstract][Full Text] [Related]
12. Degradation of acenaphthene, phenanthrene and pyrene in a packed-bed biofilm reactor. Guieysse B; Bernhoft I; Andersson BE; Henrysson T; Olsson S; Mattiasson B Appl Microbiol Biotechnol; 2000 Dec; 54(6):826-31. PubMed ID: 11152076 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic biodegradation potential of aromatic hydrocarbons in an alluvial aquifer--potentials and limits of signature metabolite analysis and two stable isotope-based techniques. Morasch B; Hunkeler D; Zopfi J; Temime B; Höhener P Water Res; 2011 Oct; 45(15):4459-69. PubMed ID: 21741669 [TBL] [Abstract][Full Text] [Related]
15. Biodegradation of Maya crude oil fractions by bacterial strains and a defined mixed culture isolated from Cyperus laxus rhizosphere soil in a contaminated site. Díaz-Ramírez IJ; Ramírez-Saad H; Gutiérrez-Rojas M; Favela-Torres E Can J Microbiol; 2003 Dec; 49(12):755-61. PubMed ID: 15162200 [TBL] [Abstract][Full Text] [Related]
16. Modelling cometabolism of petroleum hydrocarbon pollutants in soil by Azotobacter vinelandii in the obligate presence of Pseudomonas sp. Onwurah IN Bull Environ Contam Toxicol; 2004 Oct; 73(4):690-7. PubMed ID: 15389334 [No Abstract] [Full Text] [Related]
17. [Rhizosphere strain of Pseudomonas chlororaphis capable of degrading naphthalene in the presence of cobalt/nickel]. Siunova TV; Anokhina TO; Mashukova AV; Kochetkov VV; Borodin AM Mikrobiologiia; 2007; 76(2):212-8. PubMed ID: 17583218 [TBL] [Abstract][Full Text] [Related]
18. [Microbiological degradation of mixed hydrocarbons in soil samples from a used-oil contaminated site]. Hofmann R; Dippell G; Hollederer G; Ripper J; Filip Z Schriftenr Ver Wasser Boden Lufthyg; 1993; 90():5-21. PubMed ID: 8296174 [No Abstract] [Full Text] [Related]
19. [Biodegradation of phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant-microbial associations]. Anokhina TO; Kochetkov VV; Zelenkova NF; Balakshina VV; Boronin AM Prikl Biokhim Mikrobiol; 2004; 40(6):654-8. PubMed ID: 15609856 [TBL] [Abstract][Full Text] [Related]
20. Some evidences for the involvement of plasmid in diuron herbicide degradation. El-Deeb BA; Ali AM; Ali KA Acta Microbiol Immunol Hung; 2000; 47(1):63-73. PubMed ID: 10735191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]