These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Recruitment of co-metabolic enzymes for environmental detoxification of organohalides. Wackett LP Environ Health Perspect; 1995 Jun; 103 Suppl 5(Suppl 5):45-8. PubMed ID: 8565909 [TBL] [Abstract][Full Text] [Related]
5. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway. Hur HG; Sadowsky MJ; Wackett LP Appl Environ Microbiol; 1994 Nov; 60(11):4148-54. PubMed ID: 7993096 [TBL] [Abstract][Full Text] [Related]
6. Reductive dehalogenation by cytochrome P450CAM: substrate binding and catalysis. Li S; Wackett LP Biochemistry; 1993 Sep; 32(36):9355-61. PubMed ID: 8369306 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Wackett LP; Sadowsky MJ; Newman LM; Hur HG; Li S Nature; 1994 Apr; 368(6472):627-9. PubMed ID: 8145847 [TBL] [Abstract][Full Text] [Related]
8. Catalytic reductive dehalogenation of hexachloroethane by molecular variants of cytochrome P450cam (CYP101). Walsh ME; Kyritsis P; Eady NA; Hill HA; Wong LL Eur J Biochem; 2000 Sep; 267(18):5815-20. PubMed ID: 10971594 [TBL] [Abstract][Full Text] [Related]
9. Distal site and surface mutations of cytochrome P450 1A2 markedly enhance dehalogenation of chlorinated hydrocarbons. Yanagita K; Sagami I; Shimizu T Arch Biochem Biophys; 1997 Oct; 346(2):269-76. PubMed ID: 9343374 [TBL] [Abstract][Full Text] [Related]
10. A role for Asp-251 in cytochrome P-450cam oxygen activation. Gerber NC; Sligar SG J Biol Chem; 1994 Feb; 269(6):4260-6. PubMed ID: 8307990 [TBL] [Abstract][Full Text] [Related]
12. Enzyme-catalyzed dehalogenation of pentachloroethane: why F87W-cytochrome P450cam is faster than wild type. Manchester JI; Ornstein RL Protein Eng; 1995 Aug; 8(8):801-7. PubMed ID: 8637849 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of polychlorinated benzenes by genetically engineered CYP101 (cytochrome P450(cam)). Jones JP; O'Hare EJ; Wong LL Eur J Biochem; 2001 Mar; 268(5):1460-7. PubMed ID: 11231299 [TBL] [Abstract][Full Text] [Related]
14. Reductive metabolism of 1,1,1,2-tetrachloroethane and related chloroethanes by rat liver microsomes. Thompson JA; Ho B; Mastovich SL Chem Biol Interact; 1984 Oct; 51(3):321-33. PubMed ID: 6488393 [TBL] [Abstract][Full Text] [Related]
15. Purification and characterization of a cam repressor (CamR) for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. Aramaki H; Sagara Y; Kabata H; Shimamoto N; Horiuchi T J Bacteriol; 1995 Jun; 177(11):3120-7. PubMed ID: 7768809 [TBL] [Abstract][Full Text] [Related]
16. The in vitro dechlorination of some polychlorinated ethanes. Town C; Leibman KC Drug Metab Dispos; 1984; 12(1):4-8. PubMed ID: 6141910 [TBL] [Abstract][Full Text] [Related]
17. Evidence for autoregulation of camR, which encodes a repressor for the cytochrome P-450cam hydroxylase operon on the Pseudomonas putida CAM plasmid. Aramaki H; Sagara Y; Hosoi M; Horiuchi T J Bacteriol; 1993 Dec; 175(24):7828-33. PubMed ID: 8253671 [TBL] [Abstract][Full Text] [Related]
19. Binding sites of pyridine in cytochrome P-450cam. Ristau O; Jung C Biochim Biophys Acta; 1991 Jul; 1078(3):321-5. PubMed ID: 1859821 [TBL] [Abstract][Full Text] [Related]
20. Thermodynamic aspects of the CO-binding reaction to cytochrome P-450cam. Relevance with their biological significance and structure. Kato M; Makino R; Iizuka T Biochim Biophys Acta; 1995 Jan; 1246(2):178-84. PubMed ID: 7819285 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]