BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 7763936)

  • 1. The regulation of expression of the Lactococcus lactis lactose operon.
    Griffin HG; Gasson MJ
    Lett Appl Microbiol; 1993 Aug; 17(2):92-6. PubMed ID: 7763936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploitation of a chromosomally integrated lactose operon for controlled gene expression in Lactococcus lactis.
    Payne J; MacCormick CA; Griffin HG; Gasson MJ
    FEMS Microbiol Lett; 1996 Feb; 136(1):19-24. PubMed ID: 8919450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation and evolution of lactose genes in the galactose-lactose operon of Lactococcus lactis NCDO2054.
    Vaughan EE; Pridmore RD; Mollet B
    J Bacteriol; 1998 Sep; 180(18):4893-902. PubMed ID: 9733693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of bacterial luciferase genes as reporter genes in Lactococcus: regulation of the Lactococcus lactis subsp. lactis lactose genes.
    Eaton TJ; Shearman CA; Gasson MJ
    J Gen Microbiol; 1993 Jul; 139(7):1495-501. PubMed ID: 8371112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The extent of co-metabolism of glucose and galactose by Lactococcus lactis changes with the expression of the lacSZ operon from Streptococcus thermophilus.
    Solem C; Koebmann B; Jensen PR
    Biotechnol Appl Biochem; 2008 May; 50(Pt 1):35-40. PubMed ID: 17822381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nisin independent induction of the nisA promoter in Lactococcus lactis during growth in lactose or galactose.
    Chandrapati S; O'Sullivan DJ
    FEMS Microbiol Lett; 1999 Jan; 170(1):191-8. PubMed ID: 9919668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and expression of the Lactococcus lactis gene for phospho-beta-galactosidase (lacG) in Escherichia coli and L. lactis.
    De Vos WM; Gasson MJ
    J Gen Microbiol; 1989 Jul; 135(7):1833-46. PubMed ID: 2515252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the Lactococcus lactis lactose operon promoter: contribution of flanking sequences and LacR repressor to promoter activity.
    van Rooijen RJ; Gasson MJ; de Vos WM
    J Bacteriol; 1992 Apr; 174(7):2273-80. PubMed ID: 1372602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishing a model to study the regulation of the lactose operon in Lactobacillus casei.
    Gosalbes MJ; Monedero V; Alpert CA; Pérez-Martínez G
    FEMS Microbiol Lett; 1997 Mar; 148(1):83-9. PubMed ID: 9066115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis.
    de Vos WM; Boerrigter I; van Rooyen RJ; Reiche B; Hengstenberg W
    J Biol Chem; 1990 Dec; 265(36):22554-60. PubMed ID: 2125052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of catabolite repression and inducer exclusion on the bistable behavior of the lac operon.
    Santillán M; Mackey MC
    Biophys J; 2004 Mar; 86(3):1282-92. PubMed ID: 14990461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular cloning, transcriptional analysis, and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis.
    van Rooijen RJ; de Vos WM
    J Biol Chem; 1990 Oct; 265(30):18499-503. PubMed ID: 2120234
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cloning, DNA sequence, and regulation of expression of a gene encoding beta-galactosidase from Lactococcus lactis.
    Griffin HG; MacCormick CA; Gasson MJ
    DNA Seq; 1996; 6(6):337-46. PubMed ID: 8988372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of a beta-galactosidase gene from Clostridium acetobutylicum in Lactococcus lactis subsp. lactis.
    Pillidge CJ; Pearce LE
    J Appl Bacteriol; 1991 Jul; 71(1):78-85. PubMed ID: 1910034
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning of lactose genes in dairy lactic streptococci: the phospho-beta-galactosidase and beta-galactosidase genes and their expression products.
    De Vos WM; Simons G
    Biochimie; 1988 Apr; 70(4):461-73. PubMed ID: 3139067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic characterization of a Rhizobium meliloti lactose utilization locus.
    Jelesko JG; Leigh JA
    Mol Microbiol; 1994 Jan; 11(1):165-73. PubMed ID: 8145640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration and gene replacement in the Lactococcus lactis lac operon: induction of a cryptic phospho-beta-glucosidase in LacG-deficient strains.
    Simons G; Nijhuis M; de Vos WM
    J Bacteriol; 1993 Aug; 175(16):5168-75. PubMed ID: 8349556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a food-grade host/vector system for Lactococcus lactis based on the lactose operon.
    MacCormick CA; Griffin HG; Gasson MJ
    FEMS Microbiol Lett; 1995 Mar; 127(1-2):105-9. PubMed ID: 7737470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of a sodium chloride-regulated promoter in Lactococcus lactis by single-copy chromosomal fusion with a reporter gene.
    Sanders JW; Venema G; Kok J; Leenhouts K
    Mol Gen Genet; 1998 Apr; 257(6):681-5. PubMed ID: 9604892
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cloning vector for creation of Escherichia coli lacZ translational fusions and generation of linear template for chromosomal integration.
    Uhlich GA; Chen CY
    Plasmid; 2012 May; 67(3):259-63. PubMed ID: 22197962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.